Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830371

RESUMO

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Células A549 , Tiazolidinas/farmacologia , Tiazolidinas/química , Tiazolidinas/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 108: 129800, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763480

RESUMO

In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 µM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.


Assuntos
Antimaláricos , Antituberculosos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Plasmodium falciparum , Quinazolinonas , Triazóis , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/síntese química , Camundongos , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Relação Dose-Resposta a Droga , Células RAW 264.7
3.
ACS Omega ; 9(14): 16384-16399, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617610

RESUMO

A series of novel 24 phenylhydrazono phenoxyquinoline derivatives were synthesized with moderate to excellent yield and screened for their efficacy against the α-amylase enzyme through in silico studies. The structures were characterized using spectroscopic techniques such as 1HNMR, 13CNMR, and HREI-MS. Comprehensive computational studies including, drug-likeness and ADMET profiling, quantum chemical calculations, molecular docking, and molecular dynamics (MD) simulation studies, were performed. A density functional theory study of the synthesized compounds indicated a favorable reactivity profile. The synthesized novel analogues were docked against α-amylase (PDB 6OCN) enzymes to investigate the binding interactions. Based on the docking studies, one of the compounds was found to be the hit with the highest negative binding affinity for α-amylase. A MD simulation study indicated stable binding throughout the simulation.

4.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38264919

RESUMO

Antibiotic resistance is a pressing global health challenge, driven in part by the remarkable efflux capabilities of efflux pump in AcrB (Acriflavine Resistance Protein B) protein in Gram-negative bacteria. In this study, a multi-approached computational screening strategy encompassing molecular docking, In silico absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis, druglikeness assessment, molecular dynamics simulations and density functional theory studies was employed to identify novel hits capable of acting against AcrB-mediated antibiotic resistance. Ligand library was acquired from the COCONUT database. Performed computational analyses unveiled four promising hit molecules (CNP0298667, CNP0399927, CNP0321542 and CNP0269513). Notably, CNP0298667 exhibited the highest negative binding affinity of -11.5 kcal/mol, indicating a possibility of strong potential to disrupt AcrB function. Importantly, all four hits met stringent druglikeness criteria and demonstrated favorable in silico ADMET profiles, underscoring their potential for further development. MD simulations over 100 ns revealed that the CNP0321542-4DX5 and CNP0269513-4DX5 complexes formed robust and stable interactions with the AcrB efflux pump. The identified hits represent a promising starting point for the design and optimization of novel therapeutics aimed at combating AcrB-mediated antibiotic resistance in Gram-negative bacteria.Communicated by Ramaswamy H. Sarma.

5.
Nat Prod Res ; : 1-8, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206888

RESUMO

This study investigates the anti-cancer potential of recently discovered indole alkaloids from Nauclea Officinalis against third and fourth-generation EGFR mutations using computational tools. Through ADMET profiling, druglikeness prediction, docking, and simulations, we assessed their pharmacokinetics, binding interactions, and stability. Promising druglikeness and binding affinity were observed, particularly for (±)-19-O-butylangustoline, which demonstrated stronger binding against both EGFR mutants. MD simulations confirmed stable interactions, with (±)-19-O-butylangustoline exhibiting the highest stability. These findings highlight these indole alkaloids as potential anti-cancer agents, with (±)-19-O-butylangustoline warranting further optimisation for therapeutic development. This study informs their potential through insights into molecular properties and binding energetics.

6.
Nat Prod Res ; 38(5): 891-896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37074699

RESUMO

Limonoids serve as vital secondary metabolites. Citrus limonoids show a wide range of pharmacological potential. As a result of which limonoids from citrus are of considerable research interest. Identification of new therapeutic molecules from natural origins has been widely adopted as a successful strategy in drug discovery. This work mainly focused on the high-throughput computational exploration of the antiviral potential of three vital limonoids, i.e. Obacunone, Limonin and Nomilin against spike proteins of SARS CoV-2 (PDB:6LZG), Zika virus NS3 helicase (PDB:5JMT), Serotype 2 RNA dependent RNA polymerase of dengue virus (PDB:5K5M). Herein we report the molecular docking, MD simulation studies of nine docked complexes, and density functional theory (DFT) of selected limonoids. The results of this study indicated that all three limonoids have good molecular features but out of these three obacunone exerted satisfactory results for DFT, docking and MD simulation study.


Assuntos
Benzoxepinas , Limoninas , Infecção por Zika virus , Zika virus , Humanos , Limoninas/farmacologia , Limoninas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antivirais/farmacologia
7.
Bioorg Med Chem Lett ; 97: 129551, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979730

RESUMO

A library of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives (7a-q) and (8a-j) were synthesized and evaluated for their in-vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The two compounds 7h and 8h have displayed excellent antitubercular activity with MIC values of 3.12 and 1.56 µg/mL respectively (MIC values of standard drugs; Ciprofloxacin 1.56 µg/mL & Ethambutol 3.12 µg/mL). Whereas, the four compounds 7i, 7n, 7p and 8i displayed noticeable antitubercular activity with a MIC value of 6.25 µg/mL. The active compounds of the series were further studied for their cytotoxicity against RAW264.7 cell line using MTT assay. Furthermore, to study the probable mechanism of antitubercular action, physicochemical property profiling, DFT calculation and molecular docking study were executed on mycobacterial cell wall target Decaprenylphosphoryl-ß-d-ribose 2'-epimerase 1 (DprE1). Among all the compounds, 7h (-10 kcal/mol) and 8h (-10.1 kcal/mol) exerted the highest negative binding affinity against the targeted DprE1 (PDB: 4NCR) protein.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triazóis/química , Testes de Sensibilidade Microbiana
8.
J Biomol Struct Dyn ; : 1-20, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079301

RESUMO

In the present study, we have reported the synthesis of novel isoniazid-triazole derivatives (4a-r), via the click chemistry approach. The synthesized isoniazid-triazole derivatives have potent in vitro antitubercular activity against the Mycobacterium tuberculosis (MTB) H37Rv strain. Among these compounds, 4b, 4f, 4g, 4j, 4k, 4m, 4o, 4p, and 4r were found to be the most active ones with a MIC value of 0.78 µg/mL. This activity is better than ciprofloxacin (MIC value = 1.56 µg/mL) and ethambutol (MIC value = 3.12 µg/mL). The compounds, 4a, 4c, 4d, 4e, 4h, 4i, 4l, and 4n have displayed activity equal to ciprofloxacin (MIC value = 1.56 µg/mL). The cytotoxicity of the active isoniazid-triazole derivatives was studied against RAW 264.7 cell line by MTT assay at 25 µg/mL concentration and no toxicity was observed. Moreover, in-vitro results were supported by in-silico studies with the known antitubercular target (PanK). The drug-likeness, density functional study, molecular docking, and molecular dynamics simulation studies of isoniazid-triazole derivatives validated the ability to form a stable complex with Pantothenate kinase (PanK), which will result in inhibiting the Pantothenate kinase (PanK). Therefore, the results obtained indicate that this class of compounds may offer candidates for future development, and positively provide drug alternatives for tuberculosis treatment.Communicated by Ramaswamy H. Sarma.

9.
J Biomol Struct Dyn ; : 1-23, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735906

RESUMO

Obesity, characterized by excessive fat accumulation, is a major health concern. Inhibition of human pancreatic lipase, an enzyme involved in fat digestion, offers a potential strategy for weight loss and obesity treatment. This study aimed to identify polyphenols capable of forming stable complexes with human pancreatic lipase to block its activity. Molecular docking, density functional theory (DFT), molecular dynamics (MD) simulations, and MMPBGBSA calculations were employed to evaluate ligand binding, stability, and energy profiles. Pharmacophore modeling was also performed to identify key structural features for effective inhibition. Virtual screening identified ZINC000015120539, ZINC000000899200, ZINC000001531702, and ZINC000013340267 as potential candidates, exhibiting favorable binding and stable interactions over 100 ns MD simulations. These findings provide insights into the inhibitory potential of selected polyphenols on human pancreatic lipase and support further experimental investigations for obesity treatment.Communicated by Ramaswamy H. Sarma.

10.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565744

RESUMO

Antibiotic resistance has become a pressing global health crisis, with bacterial infections increasingly difficult to treat due to the emergence of multidrug resistance. This study aims to identify potential chalcone molecules that interact with two key multidrug efflux pumps, AcrB and EmrD, of Escherichia coli, using advanced computational tools. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity), drug-likeness prediction, molecular docking, and molecular dynamics simulation analyses were conducted on a ligand library comprising 100 chalcone compounds against AcrB (PDB: 4DX5) and EmrD (PDB: 2GFP). The results demonstrated that Elastichalcone A (PubChem CID 102103730) exhibited a remarkable binding affinity of -9.9 kcal/mol against AcrB, while 4'-methoxy-4-hydroxychalcone (PubChem CID 5927890) displayed a binding affinity of -9.8 kcal/mol against EmrD. Both ligands satisfied drug-likeness rules and possessed favorable pharmacokinetic profiles. Molecular dynamics simulation of the AcrB-Elastichalcone A complex remained stable over 100 ns, with minimal fluctuations in root-mean-square deviation and root-mean-square fluctuation. The screened ligand library demonstrated good drug-likeness and pharmacokinetic properties. Moreover, the MM/PB(GB)SA calculation indicated the tight binding and thermodynamic stability of the simulated protein-ligand complexes. Overall, this study highlights the potential of chalcones as promising candidates for targeting multidrug efflux pumps, offering a potential strategy to overcome antibiotic resistance. Further exploration and optimization of these compounds may lead to the development of effective therapeutics against multidrug-resistant bacterial infections.Communicated by Ramaswamy H. Sarma.

11.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340697

RESUMO

The cases of bacterial multidrug resistance are increasing every year and becoming a serious concern for human health. Multidrug efflux pumps are key players in the formation of antibiotic resistance, which transfer out a broad spectrum of drugs from the cell and convey resistance to the host. Efflux pumps have significantly reduced the efficacy of the previously available antibiotic armory, thereby increasing the frequency of therapeutic failures. In gram-negative bacteria, the AcrAB-TolC efflux pump is the principal transporter of the substrate and plays a major role in the formation of antibiotic resistance. In the current work, advanced computer-aided drug discovery approaches were utilized to find hit molecules from the library of biogenic chalcones against the bacterial AcrB efflux pump. The results of the performed computational studies via molecular docking, drug-likeness prediction, pharmacokinetic profiling, pharmacophore mapping, density functional theory, and molecular dynamics simulation study provided ZINC000004695648, ZINC000014762506, ZINC000014762510, ZINC000095099506, and ZINC000085510993 as stable hit molecules against the AcrB efflux pumps. Identified hits could successfully act against AcrB efflux pumps after optimization as lead molecules.Communicated by Ramaswamy H. Sarma.

12.
J Mol Model ; 29(4): 113, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971900

RESUMO

Cases of drug-resistant tuberculosis (TB) have increased worldwide in the last few years, and it is a major threat to global TB control strategies and the human population. Mycobacterium tuberculosis is a common causative agent responsible for increasing cases of TB and as reported by WHO, approximately, 1.5 million death occurred from TB in 2020. Identification of new therapies against drug-resistant TB is an urgent need to be considered primarily. The current investigation aims to find the potential biogenic chalcone against the potential targets of drug-resistant TB via in silico approach. The ligand library of biogenic chalcones was screened against DprE1. Results of molecular docking and in silico ADMET prediction revealed that ZINC000005158606 has lead-like properties against the targeted protein. Pharmacophore modeling was done to identify the pharmacophoric features and their geometric distance present in ZINC000005158606. The binding stability study performed using molecular dynamics (MD) simulation of the DprE1-ZINC000005158606 complex revealed the conformational stability of the complex system over 100 ns with minimum deviation. Further, the in silico anti-TB sensitivity of ZINC000005158606 was found to be higher as compared to the standards against Mycobacterium tuberculosis. The overall in silico investigation indicated the potential of identified hit to act as a lead molecule against Mycobacterium tuberculosis.


Assuntos
Chalconas , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Chalconas/farmacologia , Simulação de Acoplamento Molecular , Antituberculosos/química
13.
Nat Prod Res ; 37(23): 4053-4057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36622893

RESUMO

Tinospora cordifolia and Actinidia deliciosa are the widely used plant in Ayurvedic systems of medicine. Both plants are well known for their immunomodulatory activity. In the current study, in silico exploration was performed using advanced computational techniques such as molecular docking and molecular dynamics simulation approach. Bioactive molecules from the Tinospora cordifolia and Actinidia deliciosa were docked against the Human IL-2. Out of all the docked bioactive molecules, Pygenic acid-B (PubChem CID:146157192) showed the highest negative binding affinity.


Assuntos
Actinidia , Tinospora , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Tinospora/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
14.
ACS Omega ; 8(1): 391-409, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643495

RESUMO

Over the centuries, cancer has been considered one of the significant health threats. It holds the position in the list of deadliest diseases over the globe. In women, breast cancer is the most common among many cancers and is the second most common cancer all over the world, while lung cancer is the first. Cyclin-dependent kinase 8 (CDK8) has been identified as a critical oncogenic driver that is found in breast cancer and associated with tumor progression. Flavonoids were virtually screened against CDK8 using molecular docking, drug-likeness, ADMET prediction, and a molecular dynamics (MD) simulation approach to determine the potential flavonoid structure against CDK8. The results indicated that ZINC000005854718 showed the highest negative binding affinity of -10.7 kcal/mol with the targeted protein and passed all the drug-likeness parameters. Performed molecular dynamics simulation showed that docked complex systems have good conformational stability over 100 ns in different temperatures (298, 300, 305, 310, and 320 K). The comparison between calculated binding free energy via MM/PB(GB)SA methods and binding affinity calculated via molecular docking suggested tight binding of ZINC000005854718 with targeted protein. The results concluded that ZINC000005854718 has drug-like properties with tight and stable binding with the targeted protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA