Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Immunol ; 9(93): eadi5578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427717

RESUMO

Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.


Assuntos
Mastócitos , Bexiga Urinária , Humanos , Camundongos , Feminino , Animais , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Fator de Crescimento Neural/metabolismo , Reinfecção/complicações , Reinfecção/metabolismo , Dor/etiologia , Dor/metabolismo , Dor/prevenção & controle
2.
EBioMedicine ; 99: 104924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113758

RESUMO

BACKGROUND: COVID-19 vaccines used in humans are highly effective in limiting disease and death caused by the SARS-CoV-2 virus, yet improved vaccines that provide greater protection at mucosal surfaces, which could reduce break-through infections and subsequent transmission, are still needed. METHODS: Here we tested an intranasal (I.N.) vaccination with the receptor binding domain of Spike antigen of SARS-CoV-2 (S-RBD) in combination with the mucosal adjuvant mastoparan-7 compared with the sub-cutaneous (S.C.) route, adjuvanted by either M7 or the gold-standard adjuvant, alum, in mice, for immunological read-outs. The same formulation delivered I.N. or S.C. was tested in hamsters to assess efficacy. FINDINGS: I.N. vaccination improved systemic T cell responses compared to an equivalent dose of antigen delivered S.C. and T cell phenotypes induced by I.N. vaccine administration included enhanced polyfunctionality (combined IFN-γ and TNF expression) and greater numbers of T central memory (TCM) cells. These phenotypes were T cell-intrinsic and could be recalled in the lungs and/or brachial LNs upon antigen challenge after adoptive T cell transfer to naïve recipients. Furthermore, mucosal vaccination induced antibody responses that were similarly effective in neutralising the binding of the parental strain of S-RBD to its ACE2 receptor, but showed greater cross-neutralising capacity against multiple variants of concern (VOC), compared to S.C. vaccination. I.N. vaccination provided significant protection from lung pathology compared to unvaccinated animals upon challenge with homologous and heterologous SARS-CoV-2 strains in a hamster model. INTERPRETATION: These results highlight the role of nasal vaccine administration in imprinting an immune profile associated with long-term T cell retention and diversified neutralising antibody responses, which could be applied to improve vaccines for COVID-19 and other infectious diseases. FUNDING: This study was funded by Duke-NUS Medical School, the Singapore Ministry of Education, the National Medical Research Council of Singapore and a DBT-BIRAC Grant.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Cricetinae , Humanos , Animais , Camundongos , Roedores , Anticorpos Amplamente Neutralizantes , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Sci Transl Med ; 15(719): eadd2420, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878671

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that can vertically transmit from mother to fetus, potentially causing congenital defects, including microcephaly. It is not fully understood why some fetuses experience severe complications after in utero exposure to ZIKV, whereas others do not. Given the antigenic similarity between ZIKV and the closely related virus dengue (DENV) and the potential of DENV-specific antibodies to enhance ZIKV disease severity in mice, we questioned whether maternal DENV immunity could influence fetal outcomes in a nonhuman primate model of ZIKV vertical transmission. We found significantly increased severity of congenital Zika syndrome (CZS) in fetuses of DENV-immune cynomolgus macaques infected with ZIKV in early pregnancy compared with naïve controls, which occurred despite no effect on maternal ZIKV infection or antibody responses. Ultrasound measurements of head circumference and biparietal diameter measurements taken sequentially throughout pregnancy demonstrated CZS in fetuses of DENV-immune pregnant macaques. Furthermore, severe CZS enhanced by DENV immunity was typified by reduced cortical thickness and increased frequency of neuronal death, hemorrhaging, cellular infiltrations, calcifications, and lissencephaly in fetal brains. This study shows that maternal immunity to DENV can worsen ZIKV neurological outcomes in fetal primates, and it provides an animal model of vertical transmission closely approximating human developmental timelines that could be used to investigate severe ZIKV disease outcomes and interventions in fetuses.


Assuntos
Dengue , Microcefalia , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Infecção por Zika virus/complicações , Microcefalia/complicações , Feto , Dengue/complicações , Macaca , Anticorpos Antivirais
4.
Curr Treat Options Infect Dis ; 15(2): 27-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124673

RESUMO

Dengue viruses (DENV) continue to circulate worldwide, resulting in a significant burden on human health. There are four antigenically distinct serotypes of DENV, an infection of which could result in a potentially life-threatening disease. Current treatment options are limited and rely on supportive care. Although one dengue vaccine is approved for dengue-immune individuals and has modest efficacy, there is still a need for therapeutics and vaccines that can reduce dengue morbidities and lower the infection burden. There have been recent advances in the development of promising drugs for the treatment of dengue. These include direct antivirals that can reduce virus replication as well as host-targeted drugs for reducing inflammation and/or vascular pathologies. There are also new vaccine candidates that are being evaluated for their safety and efficacy in preventing dengue disease. This review highlights nuances in the current standard-of-care treatment of dengue. We also discuss emerging treatment options, therapeutic drugs, and vaccines that are currently being pursued at various stages of preclinical and clinical development.

5.
Vaccine ; 41(27): 4042-4049, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37045682

RESUMO

Coronavirus disease-2019 (COVID-19) is an ongoing pandemic caused by the newly emerged virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, COVID-19 vaccines are given intramuscularly and they have been shown to evoke systemic immune responses that are highly efficacious towards preventing severe disease and death. However, vaccine-induced immunity wanes within a short time, and booster doses are currently recommended. Furthermore, current vaccine formulations do not adequately restrict virus infection at the mucosal sites, such as in the nasopharyngeal tract and, therefore, have limited capacity to block virus transmission. With these challenges in mind, several mucosal vaccines are currently being developed with the aim of inducing long-lasting protective immune responses at the mucosal sites where SARS-COV-2 infection begins. Past successes in mucosal vaccinations underscore the potential of these developmental stage SARS-CoV-2 vaccines to reduce disease burden, if not eliminate it altogether. Here, we discuss immune responses that are triggered at the mucosal sites and recent advances in our understanding of mucosal responses induced by SARS-CoV-2 infection and current COVID-19 vaccines. We also highlight several mucosal SARS-COV-2 vaccine formulations that are currently being developed or tested for human use and discuss potential challenges to mucosal vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Efeitos Psicossociais da Doença , Mucosa , Vacinação
6.
Nat Rev Immunol ; 23(1): 55-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35610312

RESUMO

Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.


Assuntos
Hipersensibilidade , Mastócitos , Camundongos , Animais , Humanos
7.
Discov Immunol ; 2(1): kyad016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567067

RESUMO

Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.

8.
Cell Rep ; 40(13): 111346, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170813

RESUMO

Mast cells (MCs) are granulated cells implicated in inflammatory disorders because of their capacity to degranulate, releasing prestored proinflammatory mediators. As MCs have the unique capacity to reform granules following degranulation in vitro, their potential to regranulate in vivo is linked to their pathogenesis. It is not known what factors regulate regranulation, let alone if regranulation occurs in vivo. We report that mice can undergo multiple bouts of MC regranulation following successive anaphylactic reactions. mTORC1, a nutrient sensor that activates protein and lipid synthesis, is necessary for regranulation. mTORC1 activity is regulated by a glucose-6-phosphate transporter, Slc37a2, which increases intracellular glucose-6-phosphate and ATP during regranulation, two upstream signals of mTOR. Additionally, Slc37a2 concentrates extracellular metabolites within endosomes, which are trafficked into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.


Assuntos
Degranulação Celular , Mastócitos , Trifosfato de Adenosina/metabolismo , Animais , Antiporters , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Lipídeos , Mastócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas de Transporte de Fosfato/metabolismo
10.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066286

RESUMO

Sub-neutralizing concentrations of antibodies in dengue infected patients is a major risk factor for the development of dengue hemorrhagic fever and dengue shock syndrome. Here, we describe a mouse model with a deficiency in mast cells (MCs) in addition to a deficiency in Type-I and II IFN receptors for studying dengue virus (DENV) infection. We used this model to understand the influence of MCs in a maternal antibody-dependent model of severe dengue, where offspring born to DENV-immune mothers are challenged with a heterologous DENV serotype. Mice lacking both MCs and IFN receptors were found susceptible to primary DENV infection and showed morbidity and mortality. When these mice were immunized, pups born to DENV-immune mothers were found to be protected for a longer duration from a heterologous DENV challenge. In the absence of MCs and type-I interferon signaling, IFN-γ was found to protect pups born to naïve mothers but had the opposite effect on pups born to DENV-immune mothers. Our results highlight the complex interactions between MCs and IFN-signaling in influencing the role of maternal antibodies in DENV-induced disease severity.


Assuntos
Imunidade Materno-Adquirida , Mastócitos/imunologia , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Dengue Grave/diagnóstico , Dengue Grave/etiologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hospedeiro Imunocomprometido , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptor de Interferon alfa e beta/deficiência , Índice de Gravidade de Doença
11.
medRxiv ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100020

RESUMO

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.

12.
Front Immunol ; 12: 681950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168651

RESUMO

Dengue virus (DENV), a Flavivirus, causes a broad spectrum of disease in humans with key clinical signs including thrombocytopenia, vascular leakage and hemorrhaging. A major obstacle to understanding DENV immunity has been the lack of a validated immune-competent mouse model. Here, we report the infection profiles of human clinical isolates of DENV serotypes 1-4 in an immune-competent mouse model. We detected replicating DENV in the peritoneal cells, liver and the spleen that was generally resolved within 2 weeks. The DENV target cell types for infection were monocytes/macrophages, dendritic cells, endothelial cells, and we identified a novel DENV cellular target, fibroblast reticular cells of the spleen. We observed gross pathologies in the spleen and liver that are consistent with dengue disease, including hemorrhaging as well as transcriptional patterns suggesting that antiviral responses and tissue damage were induced. Key clinical blood parameters that define human DENV disease such as hemoconcentration, leukopenia and reduced number of platelets were also observed. Thus, immune-competent mice sustain replicating infection and experience signs, such as hemorrhaging, that define DENV disease in humans. This study thoroughly characterizes DENV1-4 infection in immune-competent mice and confirms the wild-type mouse model as a valid and reproducible system for investigating the mechanisms of DENV pathogenesis.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Biópsia , Dengue/patologia , Vírus da Dengue/classificação , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Hospedeiro Imunocomprometido , Camundongos , Especificidade de Órgãos , Sorogrupo
13.
Viruses ; 12(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276578

RESUMO

Dengue virus (DENV), an arbovirus, strongly activates mast cells (MCs), which are key immune cells for pathogen immune surveillance. In animal models, MCs promote clearance of local peripheral DENV infections but, conversely, also promote pathological vascular leakage when widely activated during systemic DENV infection. Since DENV is a human pathogen, we sought to ascertain whether a similar phenomenon could occur in humans by characterizing the products released by human MCs (huMCs) upon direct (antibody-independent) DENV exposure, using the phenotypically mature huMC line, ROSA. DENV did not productively infect huMCs but prompted huMC release of proteases and eicosanoids and induced a Th1-polarized transcriptional profile. In co-culture and trans-well systems, huMC products activated human microvascular endothelial cells, involving transcription of vasoactive mediators and increased monolayer permeability. This permeability was blocked by MC-stabilizing drugs, or limited by drugs targeting certain MC products. Thus, MC stabilizers are a viable strategy to limit MC-promoted vascular leakage during DENV infection in humans.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/metabolismo , Endotélio Vascular/metabolismo , Mastócitos/fisiologia , Células Th1/fisiologia , Ativação Transcricional , Biomarcadores , Permeabilidade Capilar , Degranulação Celular/imunologia , Dengue/virologia , Células Endoteliais , Endotélio Vascular/imunologia , Imunofluorescência , Perfilação da Expressão Gênica , Histocitoquímica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/citologia
14.
Science ; 370(6519): 941-950, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33122426

RESUMO

Mast cells (MCs) are central effector cells in allergic reactions that are often mediated by immunoglobulin E (IgE). Allergies commonly start at an early age, and both MCs and IgE are detectable in fetuses. However, the origin of fetal IgE and whether fetal MCs can degranulate in response to IgE-dependent activation are presently unknown. Here, we show that human and mouse fetal MCs phenotypically mature through pregnancy and can be sensitized by maternal IgE. IgE crossed the placenta, dependent on the fetal neonatal Fc receptor (FcRN), and sensitized fetal MCs for allergen-specific degranulation. Both passive and active prenatal sensitization conferred allergen sensitivity, resulting in postnatal skin and airway inflammation after the first allergen encounter. We report a role for MCs within the developing fetus and demonstrate that fetal MCs may contribute to antigen-specific vertical transmission of allergic disease.


Assuntos
Feto/imunologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Troca Materno-Fetal/imunologia , Alérgenos/imunologia , Ambrosia/imunologia , Animais , Degranulação Celular/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Placenta/imunologia , Gravidez , Receptores Fc/fisiologia
15.
Sci Rep ; 10(1): 11856, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678248

RESUMO

Dengue induces a spectrum of severity in humans from the milder dengue fever to severe disease, or dengue hemorrhagic fever (DHF). Chymase is a candidate biomarker that may aid dengue prognosis. This prospective study aimed to identify whether warning signs of severe dengue, including hypovolemia and fluid accumulation, were associated with elevated chymase. Serum chymase levels were quantified prospectively and longitudinally in hospitalized pediatric dengue patients in Sri Lanka. Warning signs were determined based on daily clinical assessments, laboratory tests and ultrasound findings. Chymase was significantly elevated during the acute phase of disease in DHF or Severe dengue, defined by either the 1997 or 2009 WHO diagnosis guidelines, and persisted longer in the most severe patients. Chymase levels were higher in patients with narrow pulse pressure and clinical warning signs such as severe leakage, fluid accumulation, pleural effusion, gall-bladder wall thickening and rapid haematocrit rise concurrent with thrombocytopenia. No association between chymase and liver enlargement was observed. This study confirms that serum chymase levels are associated with DHF/Severe dengue disease in hospitalized pediatric patients. Chymase levels correlate with warning signs of vascular dysfunction highlighting the possible functional role of chymase in vascular leakage during dengue.


Assuntos
Quimases/sangue , Vírus da Dengue/patogenicidade , Hipovolemia/diagnóstico , Derrame Pleural/diagnóstico , RNA Viral/sangue , Dengue Grave/diagnóstico , Trombocitopenia/diagnóstico , Biomarcadores/sangue , Criança , Pré-Escolar , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Hospitalização , Humanos , Hipovolemia/sangue , Hipovolemia/patologia , Hipovolemia/virologia , Estudos Longitudinais , Masculino , Derrame Pleural/sangue , Derrame Pleural/patologia , Derrame Pleural/virologia , Prognóstico , Estudos Prospectivos , Dengue Grave/sangue , Dengue Grave/patologia , Dengue Grave/virologia , Índice de Gravidade de Doença , Sri Lanka , Trombocitopenia/sangue , Trombocitopenia/patologia , Trombocitopenia/virologia , Carga Viral
16.
J Immunol ; 205(3): 555-564, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32513850

RESUMO

Coronavirus disease-2019 (COVID-19) is caused by the newly emerged virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was recently declared as a pandemic by the World Health Organization. In its severe form, the disease is characterized by acute respiratory distress syndrome, and there are no targeted intervention strategies to treat or prevent it. The immune response is thought to both contribute to the pathogenesis of disease and provide protection during its resolution. Thus, understanding the immune response to SARS-CoV-2 is of the utmost importance for developing and testing vaccines and therapeutics. In this review, we discuss the earliest knowledge and hypotheses of the mechanisms of immune pathology in the lung during acute infection as well at the later stages of disease resolution, recovery, and immune memory formation.


Assuntos
Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Animais , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2
17.
Front Immunol ; 11: 334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174923

RESUMO

Flaviviruses consist of significant human pathogens responsible for hundreds of millions of infections each year. Their antigenic relationships generate immune responses that are cross-reactive to multiple flaviviruses and their widespread and overlapping geographical distributions, coupled with increases in vaccination coverage, increase the likelihood of exposure to multiple flaviviruses. Depending on the antigenic properties of the viruses to which a person is exposed, flavivirus cross-reactivity can be beneficial or could promote immune pathologies. In this review we describe our knowledge of the functional immune outcomes that arise from varied flaviviral immune statuses. The cross-reactive antibody and T cell immune responses that are protective versus pathological are also addressed.


Assuntos
Anticorpos Antivirais/imunologia , Flavivirus/imunologia , Animais , Antígenos Virais/imunologia , Reações Cruzadas , Desenho de Fármacos , Epitopos/imunologia , Flavivirus/classificação , Infecções por Flavivirus/imunologia , Saúde Global , Humanos , Imunidade Coletiva , Imunogenicidade da Vacina , Insetos Vetores/classificação , Insetos Vetores/virologia , Funções Verossimilhança , Camundongos , Filogenia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia
18.
Sci Adv ; 5(2): eaav3208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30820456

RESUMO

Zika virus (ZIKV), an emergent flaviviral pathogen, has been linked to microcephaly in neonates. Although the risk is greatest during the first trimester of pregnancy in humans, timing alone cannot explain why maternal ZIKV infection leads to severe microcephaly in some fetuses, but not others. The antigenic similarities between ZIKV and dengue virus (DENV), combined with high levels of DENV immunity among ZIKV target populations in recent outbreaks, suggest that anti-DENV maternal antibodies could promote ZIKV-induced microcephaly. We demonstrated maternal-to-fetal ZIKV transmission, fetal infection, and disproportionate microcephaly in immunocompetent mice. We show that DENV-specific antibodies in ZIKV-infected pregnant mice enhance vertical ZIKV transmission and result in a severe microcephaly-like syndrome, which was dependent on the neonatal Fc receptor, FcRN. This novel immune-mediated mechanism of vertical transmission of viral infection is of special concern because ZIKV epidemic regions are also endemic to DENV.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Imunidade Materno-Adquirida , Microcefalia/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Imuno-Histoquímica , Camundongos , Microcefalia/diagnóstico , Fenótipo , Gravidez , Infecção por Zika virus/virologia
19.
Blood ; 133(21): 2325-2337, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30755421

RESUMO

Dengue virus (DENV) is the most prevalent vector-borne viral pathogen, infecting millions of patients annually. Thrombocytopenia, a reduction in circulating platelet counts, is the most consistent sign of DENV-induced disease, independent of disease severity. However, the mechanisms leading to DENV-induced thrombocytopenia are unknown. Here, we show that thrombocytopenia is caused by serotonin derived from mast cells (MCs), which are immune cells that are present in the perivascular space and are a major peripheral source of serotonin. We show that during DENV infection, MCs release serotonin, which prompts platelet activation, aggregation, and enhanced phagocytosis, dependent on 5HT2A receptors. MC deficiency in mice or pharmacologic inhibition of MCs reversed thrombocytopenia. Furthermore, reconstitution of MC-deficient mice with wild-type MCs, but not MCs lacking serotonin synthesis resulting from deficiency in the enzyme tryptophan hydroxylase-1, restored the thrombocytopenic phenotype. Exogenous serotonin was also sufficient to overcome the effects of drugs that inhibit platelet activation in vitro and to restore thrombocytopenia in DENV-infected MC-deficient mice. Therapeutic targeting of 5HT2A receptors during DENV infection effectively prevented thrombocytopenia in mice. Similarly, serotonin derived from DENV-activated human MCs led to increased human platelet activation. Thus, MC-derived serotonin is a previously unidentified mechanism of DENV-induced thrombocytopenia and a potential therapeutic target.


Assuntos
Plaquetas/metabolismo , Vírus da Dengue/metabolismo , Dengue/metabolismo , Ativação Plaquetária , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Trombocitopenia/metabolismo , Animais , Plaquetas/patologia , Dengue/genética , Dengue/patologia , Feminino , Humanos , Masculino , Mastócitos/patologia , Camundongos , Camundongos Knockout , Receptor 5-HT2A de Serotonina/genética , Serotonina/genética , Trombocitopenia/genética , Trombocitopenia/patologia , Trombocitopenia/virologia
20.
Nat Commun ; 10(1): 706, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30742008

RESUMO

Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis. However, the mechanisms of JEV penetration of the blood-brain-barrier (BBB) remain poorly understood. Mast cells (MCs) are granulated innate immune sentinels located perivascularly, including at the BBB. Here we show that JEV activates MCs, leading to the release of granule-associated proteases in vivo. MC-deficient mice display reduced BBB permeability during JEV infection compared to congenic wild-type (WT) mice, indicating that enhanced vascular leakage in the brain during JEV infection is MC-dependent. Moreover, MCs promoted increased JEV infection in the central nervous system (CNS), enhanced neurological deficits, and reduced survival in vivo. Mechanistically, chymase, a MC-specific protease, enhances JEV-induced breakdown of the BBB and cleavage of tight-junction proteins. Chymase inhibition reversed BBB leakage, reduced brain infection and neurological deficits during JEV infection, and prolonged survival, suggesting chymase is a novel therapeutic target to prevent JEV encephalitis.


Assuntos
Quimases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/imunologia , Encefalite Japonesa/metabolismo , Mastócitos/metabolismo , Mastócitos/virologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Quimases/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite Japonesa/mortalidade , Humanos , Imunidade Inata , Masculino , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Morbidade , Permeabilidade , Análise de Sobrevida , Proteínas de Junções Íntimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA