Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Transl Med ; 9(14): 1206, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430647

RESUMO

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.

2.
Int Angiol ; 40(2): 150-164, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33236868

RESUMO

Chronic kidney disease (CKD) and cardiovascular disease (CVD) together result in an enormous burden on global healthcare. The estimated glomerular filtration rate (eGFR) is a well-established biomarker of CKD and is associated with adverse cardiac events. This review highlights the link between eGFR reduction and that of atherosclerosis progression, which increases the risk of adverse cardiovascular events. In general, CVD risk assessments are performed using conventional risk prediction models. However, since these conventional models were developed for a specific cohort with a unique risk profile and further these models do not consider atherosclerotic plaque-based phenotypes, therefore, such models can either underestimate or overestimate the risk of CVD events. This review examined the approaches used for CVD risk assessments in CKD patients using the concept of integrated risk factors. An integrated risk factor approach is one that combines the effect of conventional risk predictors and non-invasive carotid ultrasound image-based phenotypes. Furthermore, this review provided insights into novel artificial intelligence methods, such as machine learning and deep learning algorithms, to carry out accurate and automated CVD risk assessments and survival analyses in patients with CKD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Acidente Vascular Cerebral , Inteligência Artificial , Doenças Cardiovasculares/diagnóstico por imagem , Taxa de Filtração Glomerular , Humanos , Fenótipo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Medição de Risco , Fatores de Risco , Ultrassom
3.
Comput Biol Med ; 125: 103958, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927257

RESUMO

BACKGROUND AND PURPOSE: Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. METHODS: We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. RESULTS: After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. CONCLUSIONS: The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.


Assuntos
Placa Aterosclerótica , Acidente Vascular Cerebral , Inteligência Artificial , Artérias Carótidas/diagnóstico por imagem , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Medição de Risco , Acidente Vascular Cerebral/diagnóstico por imagem
4.
Rheumatol Int ; 40(12): 1921-1939, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32857281

RESUMO

Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients.


Assuntos
Artrite Reumatoide/fisiopatologia , Aterosclerose/diagnóstico , Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , Artrite Reumatoide/complicações , Aterosclerose/complicações , Aterosclerose/fisiopatologia , Artérias Carótidas/patologia , Aprendizado Profundo , Progressão da Doença , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA