Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ChemistryOpen ; : e202300212, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350719

RESUMO

Photoactive supramolecular porphyrin assemblies are attractive molecules for light-harvesting applications. This is due to their relatively non-toxicity, biological activities and charge and energy exchange characteristics. However, the extreme cost associated with their synthesis and requirements for toxic organic solvents during purification pose a challenge to the sustainability characteristics of their applications. This work presents the first report on the sustainable synthesis, spectroscopic and photophysical characterizations of a near-infrared (NIR) absorbing Ca(II)-meso-tetrakis (4-hydroxyphenyl)porphyrin using an electrolyzed pyrrole solution. The latter was obtained by cycling the pyrrole solution across the silver nanodumbbell particle surface at room temperature. The electrolyzed solution condensed readily with acidified p-hydroxybenzaldehyde, producing the targeted purple porphyrin. The non-electrolyzed pyrrole solution formed a green substance with significantly different optical properties. Remarkable differences were observed in the voltammograms of the silver nanodumbbell particles and those of the conventional gold electrode during the pyrrole cycling, suggesting different routes of porphyrin formation. The rationale behind these formations and the associated mechanisms were extensively discussed. Metalation with aqueous Ca2+ ion caused a Stokes shift of 38.75 eV. The current study shows the advantage of the electrochemical method towards obtaining sustainable light-harvesting porphyrin at room temperature without the need for high-energy-dependent conventional processes.

2.
Environ Sci Pollut Res Int ; 28(9): 10357-10374, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33405162

RESUMO

The paper reviews graphitic carbon nitride-based nanostructured photocatalytic materials and nanofibres for applications in water purification. Titanium dioxide has shown unique features that continue to attract research and development (R&D) due to its unique properties such as availability, ultraviolet absorptivity, photocatalysis, adsorption of pollutants and solar cell engineering. Graphitic carbon nitride is an attractive photocatalyst due to its non-toxicity characteristics, good visible light absorption and good thermal and chemical stabilities. In water purification, nanofibres are currently noticed due to their distinctive properties of effective separation and sometimes elimination of organic pollutants in water. In this review, synthesis and utility of doped titanium dioxide and carbon nitride with metal nanoparticles and polymeric nanofibres from nanocomposites as effective materials for the degradation of organic contaminations from water are discussed. The history, current trends and future perspectives are highlighted.


Assuntos
Poluentes Ambientais , Nanocompostos , Nanofibras , Catálise , Grafite , Compostos de Nitrogênio , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA