Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Theor Appl Genet ; 137(9): 213, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222129

RESUMO

Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/virologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Fenótipo , Cromossomos de Plantas/genética , Vírus do Mosaico/patogenicidade , Genes de Plantas , Marcadores Genéticos
2.
N Biotechnol ; 82: 33-42, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714292

RESUMO

Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.


Assuntos
Cianobactérias , Cianobactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Biomassa , Biotecnologia , Metais/metabolismo , Metais/química , Química Verde
3.
PLoS One ; 19(2): e0299078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422072

RESUMO

To accurately determine the spread of any pathogen, including plant viruses, a quick, sensitive, cost-effective, point-of-care diagnostic assay is necessary. Wheat spindle streak mosaic virus (WSSMV) is a Bymovirus, transmitted by the plasmodiophorid Polymyxa graminis Led, which causes yellow mosaic and reduces the grain yield in wheat. Currently, detection protocols for WSSMV use ELISA or more sensitive PCR-based approaches requiring specialized laboratory and personnel. A protocol for reverse transcription loop mediated isothermal amplification (RT-LAMP) has been developed and optimized for the rapid detection of viruses using crude extracts from wheat leaves. The protocol was specific for WSSMV detection, while no reaction was observed with SBCMV or SBWMV, the non-target viruses transmitted by the same vector. The RT-LAMP assay was shown to be as sensitive as the one-step WSSMV specific RT-PCR. The RT-LAMP assay can be performed under field conditions using a portable instrument, and can help the actual spread of WSSMV, an aspect of this virus not yet well understood, to be explored.


Assuntos
Técnicas de Diagnóstico Molecular , Vírus do Mosaico , Técnicas de Amplificação de Ácido Nucleico , Potyviridae , Triticum , Extratos Vegetais
4.
Poult Sci ; 102(10): 102898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573847

RESUMO

Essential oils (EO) and natural bioactive compounds are well-known antibacterial and anti-inflammatory factors; however, little is known about their anticoccidial activity and mode of action. EO deriving from basil (BEO), garlic (GAR), oregano (OEO), thyme (TEO), and their main bioactive compounds were investigated for their anticoccidial proprieties and compared to salinomycin (SAL) and amprolium (AMP) in vitro. The invasion of Eimeria tenella sporozoites was studied on 2 cell models: Madin-Darby Bovine Kidney (MDBK) cells and primary chicken epithelial cells (cIEC). Invasion efficiency was evaluated at 2 and 24 h postinfection (hpi) with counts of extracellular sporozoites and by detection of intracellular E. tenella DNA by PCR. Results show that at both timepoints, the EO were most effective in preventing the invasion of E. tenella with an average reduction of invasion at 24 hpi by 36% in cIEC and 55% in MDBK. The study also examined cytokine gene expression in cIEC at 24 hpi and found that AMP, BEO, OEO, TEO, carvacrol (CAR), and thymol (THY) significantly reduced interleukin (IL)8 expression, with CAR also reducing expression of IL1ß and IL6 compared to the infected control. In addition, this work investigated the morphology of E. tenella sporozoites treated with anticoccidial drugs and EO using a scanning electron microscope. All the treatments induced morphological anomalies, characterized by a reduction of area, perimeter and length of sporozoites. SAL had a significant impact on altering sporozoite shape only at 24 h, whereas CAR and THY significantly compromised the morphology already at 2 hpi, compared to the untreated control. OEO and GAR showed the most significant alterations among all the treatments. The findings of this study highlight the potential of EO as an alternative to traditional anticoccidial drugs in controlling E. tenella invasion and in modulating primary immune response.


Assuntos
Doenças dos Bovinos , Coccidiose , Eimeria tenella , Óleos Voláteis , Animais , Bovinos , Eimeria tenella/fisiologia , Óleos Voláteis/farmacologia , Galinhas , Esporozoítos/fisiologia , Reação em Cadeia da Polimerase/veterinária , Coccidiose/tratamento farmacológico , Coccidiose/veterinária
5.
Viruses ; 15(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37515219

RESUMO

Cannabis sativa cultivation is experiencing a period of renewed interest due to the new opportunities for its use in different sectors including food, techno-industrial, construction, pharmaceutical and medical, cosmetics, and textiles. Moreover, its properties as a carbon sequestrator and soil improver make it suitable for sustainable agriculture and climate change mitigation strategies. The increase in cannabis cultivation is generating conditions for the spread of new pathogens. While cannabis fungal and bacterial diseases are better known and characterized, viral infections have historically been less investigated. Many viral infection reports on cannabis have recently been released, highlighting the increasing threat and spread of known and unknown viruses. However, the available information on these pathogens is still incomplete and fragmentary, and it is therefore useful to organize it into a single structured document to provide guidance to growers, breeders, and academic researchers. This review aims to present the historical excursus of cannabis virology, from the pioneering descriptions of virus-like symptoms in the 1940s/50s to the most recent high-throughput sequencing reports. Each of these viruses detected in cannabis will be categorized with an increasing degree of threat according to its potential risk to the crop. Lastly, the development of viral vectors for functional genetics studies will be described, revealing how cannabis virology is evolving not only for the characterization of its virome but also for the development of biotechnological tools for the genetic improvement of this crop.


Assuntos
Cannabis , Viroses , Vírus , Viroma , Vírus/genética , Biotecnologia
6.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112807

RESUMO

Environmental changes and global warming may promote the emergence of unknown viruses, whose spread is favored by the trade in plant products. Viruses represent a major threat to viticulture and the wine industry. Their management is challenging and mostly relies on prophylactic measures that are intended to prevent the introduction of viruses into vineyards. Besides the use of virus-free planting material, the employment of agrochemicals is a major strategy to prevent the spread of insect vectors in vineyards. According to the goal of the European Green Deal, a 50% decrease in the use of agrochemicals is expected before 2030. Thus, the development of alternative strategies that allow the sustainable control of viral diseases in vineyards is strongly needed. Here, we present a set of innovative biotechnological tools that have been developed to induce virus resistance in plants. From transgenesis to the still-debated genome editing technologies and RNAi-based strategies, this review discusses numerous illustrative studies that highlight the effectiveness of these promising tools for the management of viral infections in grapevine. Finally, the development of viral vectors from grapevine viruses is described, revealing their positive and unconventional roles, from targets to tools, in emerging biotechnologies.


Assuntos
Vírus de Plantas , Vitis , Animais , Doenças das Plantas/prevenção & controle , Vírus de Plantas/genética , Biotecnologia , Insetos Vetores
7.
Virology ; 580: 112-119, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812696

RESUMO

Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.


Assuntos
Caulimovirus , Interações entre Hospedeiro e Microrganismos , Humanos , Caulimovirus/genética , Plantas , Regiões Promotoras Genéticas , Biotecnologia
8.
Microorganisms ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456755

RESUMO

The essential oils (EOs) of Origanum compactum and Satureja montana chemotyped (CT) at carvacrol, two Thymus vulgaris CT at thujanol and thymol, and Hydrolates (Hys) of S. montana and Citrus aurantium var. amara were chosen for studying their bactericidal efficacy against few phytobacterial pathogens. The Minimal Inhibitory Concentration (MIC) and Bactericidal Concentration (MBC) were found by microdilution assay. The essential oils of O. compactum (MBC 0.06% v/v), T. vulgaris CT thymol (MBC 0.06% v/v), and Hy of C. aurantium (MBC 6.25% v/v) resulted in being the most effective against Erwinia amylovora; thus, they were used as starting concentrations for ex vivo assays. Despite the great in vitro effectiveness, the disease incidence and the population dynamic ex vivo assays showed no significant results. On the other hand, EO of O. compactum and Hy of C. aurantium (at 0.03% and 4.5% v/v, respectively) showed resistance induction in tomato plants against Xanthomonas vesicatoria infections; both treatments resulted in approximately 50% protection. In conclusion, EOs and Hys could be promising tools for agricultural defense, but further studies will be necessary to stabilize the EOs emulsions, while Hys application could be an effective method to prevent bacterial diseases when used as resistance inducer by pre-transplantation treatment at roots.

9.
Pest Manag Sci ; 78(5): 1842-1849, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060274

RESUMO

BACKGROUND: Dasineura oleae (Angelini 1831) (Diptera: Cecidomyiidae) was considered a minor pest in olive orchards, but in recent years severe outbreaks have been registered in several Mediterranean countries. Damage is caused by the feeding activity of larvae that induce gall formations and alters the physiological activity of the leaves. In Italy, this pest may be controlled by four Hymenoptera parasitoid species belonging to Platygaster and Mesopolobus genera such as Platygaster demades Walker 1835, Platygaster oleae Szelenyi 1940 (Hymenoptera: Platygastridae), Mesopolobus aspilus (Walker 1835) and Mesopolobus mediterraneus (Mayr 1903) (Hymenoptera: Pteromalidae), but parasitization becomes evident only after gall dissection. RESULTS: In this study, we aim to: (i) design a primer for the detection of specimens belonging to Platygaster and Mesopolobus genera; (ii) develop a multiplex quantitative polymerase chain reaction (qPCR) protocol combined to a fast samples DNA extraction method; (iii) apply the developed protocol to field-collected specimens and compare this method with traditional techniques based on visual estimation of parasitism rate on larvae. Primers were designed to anneal with cytochrome oxidase subunit I (COI) sequences of Platygaster and Mesopolobus genera while protocols were developed to be fast and capable to process several samples at the same time. Molecular analyses demonstrated to provide almost double of the parasitism rate assessed by visual inspection. Furthermore, on second instar larvae the PCR-based method was able to detect ten-fold times the parasitization rate estimated by visual inspection. CONCLUSION: The application on a greater scale of this newly developed method could be fundamental in the determination of the biological control potential in olive orchards.


Assuntos
Dípteros , Himenópteros , Olea , Animais , Dípteros/fisiologia , Larva/genética , Nematóceros , Controle Biológico de Vetores , Reação em Cadeia da Polimerase/métodos
10.
Viruses ; 15(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680180

RESUMO

Soil-borne cereal mosaic virus (SBCMV) is a furovirus with rigid rod-shaped particles containing an ssRNA genome, transmitted by Polymyxa graminis Led., a plasmodiophorid that can persist in soil for up to 20 years. SBCMV was reported on common and durum wheat and it can cause yield losses of up to 70%. Detection protocols currently available are costly and time-consuming (real-time PCR) or have limited sensitivity (ELISA). To facilitate an efficient investigation of the real dispersal of SBCMV, it is necessary to develop a new detection tool with the following characteristics: no extraction steps, very fast results, and high sensitivity to allow pooling of a large number of samples. In the present work, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) protocol with such characteristics, and we have compared it with real-time PCR. Our results show that the sensitivity of LAMP and real-time PCR on cDNA and RT-LAMP on crude extracts are comparable, with the obvious advantage that RT-LAMP produces results in minutes rather than hours. This paves the way for extensive field surveys, leading to a better knowledge of the impact of this virus on wheat health and yield.


Assuntos
Vírus de Plantas , Triticum , Vírus de Plantas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Transcrição Reversa , Misturas Complexas , Folhas de Planta , Sensibilidade e Especificidade
11.
Front Microbiol ; 12: 641484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927702

RESUMO

An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.

12.
Biomed Res Int ; 2020: 7465242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258141

RESUMO

Recent comparisons between plant and animal viruses reveal many common principles that underlie how all viruses express their genetic material, amplify their genomes, and link virion assembly with replication. Cauliflower mosaic virus (CaMV) is not infectious for human beings. Here, we show that CaMV transactivator/viroplasmin protein (TAV) shares sequence similarity with and behaves like the human ribonuclease H1 (RNase H1) in reducing DNA/RNA hybrids detected with S9.6 antibody in HEK293T cells. We showed that TAV is clearly expressed in the cytosol and in the nuclei of transiently transfected human cells, similar to its distribution in plants. TAV also showed remarkable cytotoxic effects in U251 human glioma cells in vitro. These characteristics pave the way for future analysis on the use of the plant virus protein TAV, as an alternative to human RNAse H1 during gene therapy in human cells.


Assuntos
Caulimovirus/enzimologia , Glioma/tratamento farmacológico , Ribonuclease H , Proteínas Virais , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Ribonuclease H/química , Ribonuclease H/farmacologia , Proteínas Virais/química , Proteínas Virais/farmacologia
13.
Methods Mol Biol ; 1875: 159-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30362003

RESUMO

Most of the molecular diagnostic protocols used for phytoplasmas detection are based on the purification of total nucleic acids and on the use of genomic DNA of the pathogen as the target of amplification. Here we describe a diagnostic approach that, avoiding the purification of nucleic acids and exploiting the amplification of the abundant phytoplasma ribosomal RNA molecules produced during the infectious process, allows reducing the time and the costs necessary for the analysis, without affecting sensitivity and specificity. This is useful in particular when high numbers of analyses are required, as in certification programs, to monitor phytoplasmas classified as quarantine or quality pathogens. The protocol here described can be used for the detection and quantification of Candidatus Phytoplasma mali, Ca. P. pyri, Ca. P. prunorum, Ca. P. vitis, and Ca. P. solani by qPCR, RT-qPCR, ddPCR, and ddRT-PCR techniques based on TaqMan chemistry.


Assuntos
DNA Bacteriano/genética , Malus/microbiologia , Phytoplasma/isolamento & purificação , RNA Ribossômico/genética , Phytoplasma/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/economia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Fatores de Tempo
14.
Curr Opin Virol ; 33: 120-128, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199788

RESUMO

All living organisms have to preserve genome integrity to ensure the survival of progeny generations. Viruses, though often regarded as 'non living', protect their nucleic acids from biotic and abiotic stresses, ranging from nuclease action to radiation-induced adducts. When the viral genome is split into multiple segments, preservation of at least one copy of each segment is required. While segmented and monopartite viruses use an all-in-one strategy, multipartite viruses have to address in the cell at least one of each viral particle in which the split positive stranded RNA genome is individually packaged. Here, we review and discuss the biology of multipartite helical RNA phytoviruses to outline our current hypothesis on a coordinated genomic RNA network RNP complex that preserves an all-in-one strategy and genome integrity.


Assuntos
Genoma Viral , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/genética , Vírus de RNA/crescimento & desenvolvimento , Vírus de RNA/genética , Montagem de Vírus , Replicação Viral
15.
Viruses ; 10(3)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562720

RESUMO

The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the 'core' nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this 'core' sequence resides a conserved "coremin" motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing "coremin" at its 5' end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S.cerevisiae ribonuclease mutants identified the 5'-to-3' exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 'core' sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.


Assuntos
Exorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , RNA não Traduzido/genética , Ativação Enzimática , Exorribonucleases/genética , Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , RNA não Traduzido/química , Transfecção , Transformação Genética , Replicação Viral
16.
Virology ; 518: 25-33, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453056

RESUMO

Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants.


Assuntos
Beta vulgaris/virologia , DNA Complementar/genética , Vírus do Mosaico/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus Reordenados/genética , Clonagem Molecular , Regulação Viral da Expressão Gênica , Folhas de Planta/virologia , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo
17.
J Gen Virol ; 98(8): 1999-2000, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28786782

RESUMO

The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3'-terminal tRNA-like structure and a replication protein typical of alpha-like viruses. Differences in the number of genome components, genome organization and the mode of transmission provide the basis for genus demarcation. Tobacco mosaic virus (genus Tobamovirus) was the first virus to be discovered (in 1886); it is present in high concentrations in infected plants, is extremely stable and has been extensively studied. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Virgaviridae, which is available at www.ictv.global/report/virgaviridae.


Assuntos
Vírus de Plantas/classificação , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Plantas/virologia , RNA Viral/genética
18.
J Gen Virol ; 98(7): 1571-1572, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714846

RESUMO

The Benyviridae is a family of multipartite plant viruses with rod-shaped virions. Genomes are segmented and comprised of single-stranded, positive-sense RNAs, each with a 5' m7G cap. Unlike rod-shaped viruses classified in the Virgaviridae family, the genome segments have a 3' polyA tract and there is post-translational cleavage of the viral replicase. The better-known members are transmitted by root-infecting vectors in the Plasmodiphorales family, once described as fungi but now classified as Cercozoa. The family has a single genus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Benyviridae, which is available at www.ictv.global/report/benyviridae.


Assuntos
Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Genoma Viral/genética , Microscopia Eletrônica , RNA Viral/genética , Replicação Viral/fisiologia
19.
Viruses ; 8(10)2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27782046

RESUMO

Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3.


Assuntos
Inativação Gênica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Chenopodiaceae , Teste de Complementação Genética , Mutação , Nicotiana
20.
Viruses ; 8(8)2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27548199

RESUMO

Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.


Assuntos
Vírus de Plantas/fisiologia , Plantas/virologia , Vírus de RNA/fisiologia , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA