Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Genet ; 12: 698148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394187

RESUMO

Ninety-five percent of the population are estimated to carry at least one genetic variant that is discordant with at least one medication. Pharmacogenomic (PGx) testing has the potential to identify patients with genetic variants that puts them at risk of adverse drug reactions and sub-optimal therapy. Predicting a patient's response to medications could support the safe management of medications and reduce hospitalization. These benefits can only be realized if prescribing clinicians make the medication changes prompted by PGx test results. This review examines the current evidence on the impact PGx testing has on hospital admissions and whether it prompts medication changes. A systematic search was performed in three databases (Medline, CINAHL and EMBASE) to search all the relevant studies published up to the year 2020, comparing hospitalization rates and medication changes amongst PGx tested patients with patients receiving treatment-as-usual (TAU). Data extracted from full texts were narratively synthesized using a process model developed from the included studies, to derive themes associated to a suggested workflow for PGx-guided care and its expected benefit for medications optimization and hospitalization. A meta-analysis was undertaken on all the studies that report the number of PGx tested patients that had medication change(s) and the number of PGx tested patients that were hospitalized, compared to participants that received TAU. The search strategy identified 5 hospitalization themed studies and 5 medication change themed studies for analysis. The meta-analysis showed that medication changes occurred significantly more frequently in the PGx tested arm across 4 of 5 studies. Meta-analysis showed that all-cause hospitalization occurred significantly less frequently in the PGx tested arm than the TAU. The results show proof of concept for the use of PGx in prescribing that produces patient benefit. However, the review also highlights the opportunities and evidence gaps that are important when considering the introduction of PGx into health systems; namely patient involvement in PGx prescribing decisions, thus a better understanding of the perspective of patients and prescribers. We highlight the opportunities and evidence gaps that are important when considering the introduction of PGx into health systems.

2.
Patient Prefer Adherence ; 15: 953-966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007161

RESUMO

INTRODUCTION: Oral anticoagulant therapy choices for patients with atrial fibrillation (AF) expanded in the last decade with the introduction of direct oral anticoagulants (DOAC). However, the implementation of DOACs was slow and varied across different health economies in England. There is limited evidence on the patient role in the uptake of new medicines, including DOACs, apart from considering their demographic and clinical characteristics. Hence, this study aimed to address the gap by exploring the view of patients with AF on factors affecting DOAC use. METHODS: A qualitative study using semi-structured interviews was conducted in three health economies in the North of England. Adult patients (>18 years) diagnosed with non-valvular AF, prescribed an oral anticoagulant (vitamin K antagonist or DOAC), and able to give written consent were recruited. Data were collected between August 2018 and April 2019. Audio recorded interviews were transcribed verbatim and analyzed using the framework method. RESULTS: Four themes with eleven subthemes discussed identified factors affecting the use of DOACs. They were linked to limited healthcare financial and workforce resources, patient involvement in decision-making, patient knowledge about DOACs, safety concerns about oral anticoagulants, and oral anticoagulant therapy impact on patients' daily lives. Lack of a) opportunities to voice patient preferences and b) information on available therapy options resulted in some patients experiencing difficulties with the prescribed therapy. This was reported to cause negative impact on their daily lives, adherence, and overall satisfaction with the therapy. CONCLUSION: Greater patient involvement in decision-making could prevent and resolve difficulties encountered by some patients and potentially improve outcomes plus increase the uptake of DOACs.

3.
Neurochem Res ; 45(6): 1354-1364, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31280399

RESUMO

Motor neuron disease (MND) is a progressive neurodegenerative disease with no effective treatment. One of the principal pathological hallmarks is the deposition of TAR DNA binding protein 43 (TDP-43) in cytoplasmic inclusions. TDP-43 aggregation occurs in both familial and sporadic MND; however, the mechanism of endogenous TDP-43 aggregation in disease is incompletely understood. This study focused on the induction of cytoplasmic accumulation of endogenous TDP-43 in the motor neuronal cell line NSC-34. The endoplasmic reticulum (ER) stressor tunicamycin induced casein kinase 1 (CK1)-dependent cytoplasmic accumulation of endogenous TDP-43 in differentiated NSC-34 cells, as seen by immunocytochemistry. Immunoblotting showed that induction of ER stress had no effect on abundance of TDP-43 or phosphorylated TDP-43 in the NP-40/RIPA soluble fraction. However, there were significant increases in abundance of TDP-43 and phosphorylated TDP-43 in the NP-40/RIPA-insoluble, urea-soluble fraction, including high molecular weight species. In all cases, these increases were lowered by CK1 inhibition. Thus ER stress signalling, as induced by tunicamycin, causes CK1-dependent phosphorylation of TDP-43 and its consequent cytosolic accumulation.


Assuntos
Caseína Quinase I/biossíntese , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Corpos de Inclusão/metabolismo , Neurônios Motores/metabolismo , Antibacterianos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citosol/efeitos dos fármacos , Citosol/patologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/patologia , Doença dos Neurônios Motores/induzido quimicamente , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tunicamicina/toxicidade
4.
ACS Med Chem Lett ; 9(6): 552-556, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29937981

RESUMO

Despite intense attention from biomedical and chemical researchers, there are few approved treatments for amyotrophic lateral sclerosis (ALS), with only riluzole (Rilutek) and edaravone (Radicava) currently available to patients. Moreover, the mechanistic basis of the activity of these drugs is currently not well-defined, limiting the ability to design new medicines for ALS. This Letter describes the synthesis of triazole-containing riluzole analogues, and their testing in a novel neuroprotective assay. Seven compounds were identified as having neuroprotective activity, with two compounds having similar activity to riluzole.

5.
Adv Neurobiol ; 15: E1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28905310
6.
J Neurochem ; 142(3): 429-443, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28485896

RESUMO

Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog-1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter-1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte-neuron co-cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three-dimensional co-culture, MAP2 western blotting and immunohistochemistry, we show that SHH-stimulated astrocytes protect neurons from kainate-induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism.


Assuntos
Astrócitos/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
7.
Biochem J ; 474(3): 333-355, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108584

RESUMO

Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.


Assuntos
Doença de Alzheimer/genética , Astrócitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Neurochem Res ; 41(8): 1857-67, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27099962

RESUMO

Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embryonic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype.


Assuntos
Astrócitos/fisiologia , Técnicas de Cultura de Células/métodos , Fenótipo , Alicerces Teciduais , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Feminino , Camundongos
9.
Neurosci Lett ; 609: 198-202, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26493605

RESUMO

Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.


Assuntos
Neuroglia/citologia , Neurônios/citologia , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais , Potenciais de Ação , Animais , Camundongos , Neuroglia/fisiologia , Neurônios/fisiologia
11.
J Neurochem ; 130(5): 668-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814819

RESUMO

Recent evidence suggests that the predominant astrocyte glutamate transporter, GLT-1/ Excitatory Amino Acid Transporter 2 (EAAT2) is associated with mitochondria. We used primary cultures of mouse astrocytes to assess co-localization of GLT-1 with mitochondria, and tested whether the interaction was dependent on neurons, actin polymerization or the kinesin adaptor, TRAK2. Mouse primary astrocytes were transfected with constructs expressing V5-tagged GLT-1, pDsRed1-Mito with and without dominant negative TRAK2. Astrocytes were visualized using confocal microscopy and co-localization was quantified using Volocity software. Image analysis of confocal z-stacks revealed no co-localization between mitochondria and GLT-1 in pure astrocyte cultures. Co-culture of astrocytes with primary mouse cortical neurons revealed more mitochondria in processes and a positive correlation between mitochondria and GLT-1. This co-localization was not further enhanced after neuronal depolarization induced by 1 h treatment with 15 mM K(+). In pure astrocytes, a rho kinase inhibitor, Y27632 caused the distribution of mitochondria to astrocyte processes without enhancing GLT-1/mitochondrial co-localization, however, in co-cultures, Y27632 abolished mitochondrial:GLT-1 co-localization. Disrupting potential mitochondrial: kinesin interactions using dominant negative TRAK2 did not alter GLT-1 distribution or GLT-1: mitochondrial co-localization. We conclude that the association between GLT-1 and mitochondria is modest, is driven by synaptic activity and dependent on polymerized actin filaments. Mitochondria have limited co-localization with the glutamate transporter GLT-1 in primary astrocytes in culture. Few mitochondria are in the fine processes where GLT-1 is abundant. It is necessary to culture astrocytes with neurones to drive a significant level of co-localization, but co-localization is not further altered by depolarization, manipulating sodium ion gradients or Na/K ATPase activity.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Imunofluorescência , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
12.
J Anat ; 224(2): 216-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24252088

RESUMO

Expression of the transmembrane NG2 chondroitin sulphate proteoglycan (CSPG) defines a distinct population of NG2-glia. NG2-glia serve as a regenerative pool of oligodendrocyte progenitor cells in the adult central nervous system (CNS), which is important for demyelinating diseases such as multiple sclerosis, and are a major component of the glial scar that inhibits axon regeneration after CNS injury. In addition, NG2-glia form unique neuron-glial synapses with unresolved functions. However, to date it has proven difficult to study the importance of NG2-glia in any of these functions using conventional transgenic NG2 'knockout' mice. To overcome this, we aimed to determine whether NG2-glia can be targeted using an immunotoxin approach. We demonstrate that incubation in primary anti-NG2 antibody in combination with secondary saporin-conjugated antibody selectively kills NG2-expressing cells in vitro. In addition, we provide evidence that the same protocol induces the loss of NG2-glia without affecting astrocyte or neuronal numbers in cerebellar brain slices from postnatal mice. This study shows that targeting the NG2 CSPG with immunotoxins is an effective and selective means for killing NG2-glia, which has important implications for studying the functions of these enigmatic cells both in the normal CNS, and in demyelination and degeneration.


Assuntos
Técnicas de Ablação/métodos , Cerebelo/metabolismo , Cerebelo/cirurgia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Oligodendroglia/metabolismo , Células-Tronco/metabolismo , Animais , Contagem de Células , Linhagem Celular , Sobrevivência Celular , Humanos , Camundongos , Técnicas de Cultura de Órgãos
13.
PLoS One ; 8(5): e63535, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23723987

RESUMO

Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta , Flavonoides/farmacologia , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Animais , Antocianinas/farmacologia , Mirtilos Azuis (Planta)/química , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
14.
Neurosci Lett ; 546: 51-6, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23651519

RESUMO

Astrocyte reactivity is implicated in the neuronal loss underlying Alzheimer's disease. Curcumin has been shown to reduce astrocyte reactivity, though the exact pathways underlying these effects are incompletely understood. Here we investigated the role of the small ubiquitin-like modifier (SUMO) conjugation in mediating this effect of curcumin. In beta-amyloid (Aß)-treated astrocytes, morphological changes and increased glial fibrillary acidic protein (GFAP) confirmed reactivity, which was accompanied by c-jun N-terminal kinase activation. Moreover, the levels of SUMO-1 conjugated proteins, as well as the conjugating enzyme, Ubc9, were decreased, with concomitant treatment with curcumin preventing these effects. Increasing SUMOylation in astrocytes, by over-expression of constitutively active SUMO-1, but not its inactive mutant, abrogated Aß-induced increase in GFAP, suggesting astrocytes require SUMO-1 conjugation to remain non-reactive.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Astrócitos/fisiologia , Curcumina/farmacologia , MAP Quinase Quinase 4/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Camundongos , Sumoilação/efeitos dos fármacos
15.
J Neurochem ; 123(1): 182-91, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22804756

RESUMO

The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K)-Akt signalling pathways retains FoxO3a in the cytoplasm, thereby inhibiting the transcriptional activation of death-promoting genes. We hypothesized that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localization of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and up-regulated Fas ligand expression. In contrast the phenolic antioxidant, tBHQ, caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a, prevented NMDA-induced up-regulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Hidroquinonas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Análise de Variância , Animais , Caspase 3/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Fatores de Transcrição Forkhead/metabolismo , Camundongos , N-Metilaspartato/farmacologia , Neurônios/citologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Medula Espinal/citologia , Fatores de Tempo , Transfecção
16.
Psychopharmacology (Berl) ; 223(3): 319-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22569815

RESUMO

RATIONALE: Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. OBJECTIVES: The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. RESULTS: We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element-binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. CONCLUSIONS: The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK-CREB-BDNF pathway in the hippocampus.


Assuntos
Mirtilos Azuis (Planta) , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Memória , RNA Mensageiro/genética , Comportamento Espacial , Envelhecimento/efeitos dos fármacos , Animais , Western Blotting , Mirtilos Azuis (Planta)/química , Transtornos Cognitivos/dietoterapia , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Endogâmicos , Comportamento Espacial/efeitos dos fármacos
17.
BMC Neurosci ; 13: 38, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22480308

RESUMO

BACKGROUND: Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. RESULTS: Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. CONCLUSIONS: The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson's disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Gliose/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Riluzol/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Gliose/metabolismo , Gliose/patologia , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Ratos Sprague-Dawley , Riluzol/uso terapêutico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Biochem Biophys Res Commun ; 418(3): 578-83, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22293195

RESUMO

Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor κB (NF-κB) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-κB signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNFα, 150 ng/ml) increased NF-κB-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative IκBα construct. In addition, TNFα increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-κB activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 µM) for 18 h. None of the flavonoids modulated constitutive or TNFα-induced NF-κB activity. Therefore, we conclude that NF-κB signalling in astrocytes is not a major target for flavonoids.


Assuntos
Astrócitos/efeitos dos fármacos , Flavonoides/farmacologia , NF-kappa B/antagonistas & inibidores , Animais , Catequina/farmacologia , Células Cultivadas , Dieta , Regulação para Baixo , Camundongos , NF-kappa B/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
20.
Neurochem Int ; 60(1): 31-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080156

RESUMO

Drugs which upregulate astrocyte glutamate transport may be useful neuroprotective compounds by preventing excitotoxicity. We set up a new system to identify potential neuroprotective drugs which act through GLT-1. Primary mouse striatal astrocytes grown in the presence of the growth-factor supplement G5 express high levels of the functional glutamate transporter, GLT-1 (also known as EAAT2) as assessed by Western blotting and ³H-glutamate uptake assay, and levels decline following growth factor withdrawal. The GLT-1 transcriptional enhancer dexamethasone (0.1 or 1 µM) was able to prevent loss of GLT-1 levels and activity following growth factor withdrawal. In contrast, ceftriaxone, a compound previously reported to enhance GLT-1 expression, failed to regulate GLT-1 in this system. The neuroprotective compound riluzole (100 µM) upregulated GLT-1 levels and activity, through a mechanism that was not dependent on blockade of voltage-sensitive ion channels, since zonasimide (1 mM) did not regulate GLT-1. Finally, CDP-choline (10 µM-1 mM), a compound which promotes association of GLT-1/EAAT2 with lipid rafts was unable to prevent GLT-1 loss under these conditions. This observation extends the known pharmacological actions of riluzole, and suggests that this compound may exert its neuroprotective effects through an astrocyte-dependent mechanism.


Assuntos
Astrócitos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Animais , Astrócitos/metabolismo , Ceftriaxona/farmacologia , Células Cultivadas , Ácido Glutâmico/metabolismo , Isoxazóis/farmacologia , Camundongos , Neostriado/citologia , Regulação para Cima , Zonisamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA