RESUMO
The biocompatibility of biphasic α,ß-tricalcium phosphate ceramics, obtained by annealing a compact preform based on ß-tricalcium phosphate powder, was studied in vitro. It was found that within 10-30 days the adhesion of primary dental pulp stem cells located on the surface of biphasic α,ß-tricalcium phosphate ceramics is suppressed. Decrease of the cell number on the surface of biphasic α,ß-tricalcium phosphate ceramics, most likely, can be associated with both the pH level (acidic) as a result of hydrolysis of the more soluble phase of α-tricalcium phosphate and with the nature of surface that changes as a result of the formation and growth of hydroxyapatite crystals.
RESUMO
A technique for colloidal forming of Ca2P2O7 macroporous bioceramics, based on low-pressure injection molding (LPIM) of a glycerol-water slip containing Ca2P2O7 and Ca(Ð2PO4)2 into a plastic mold fabricated via FDM 3D-printing, was proposed. Chemical reaction between the solid phases of the water containing slip - Ca2P2O7 and Ca(Ð2PO4)2, resulting in brushite (CaHPO4·2H2O) formation, led to consolidation of the casting and preserved its complex architecture in the course of mold burning-out. Macroporous ceramics of Kelvin structure (70% macropores with the sizes from 2 up to 4 mm), based on a pre-defined composition with 10 wt% Ca(PO3)2 and sintered in liquid-phase regime, demonstrated a compressive strength of 1.4 ± 0.1 MPa at a density of 22 ± 2%. In vitro tests on bioactivity in SBF solution, as well as on resorption of the ceramics in model solution of citric acid, were carried out.
RESUMO
In the present study, the Pulsed Laser Deposition (PLD) technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC) was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP) by chemical treatments. The results of X-ray diffraction (XRD), Raman, Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM) studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs) were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.
RESUMO
Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to the targets would led to a finer coating's surface topography with the average size of 78 nm for the structural elements.
RESUMO
Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100µm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid.
Assuntos
Ligas/química , Substitutos Ósseos/química , Cálcio/química , Cerâmica/química , Materiais Revestidos Biocompatíveis/química , Vidro/química , Implantes Experimentais , Magnésio/química , HumanosRESUMO
Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of ß-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content.
RESUMO
We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission.
Assuntos
Elétrons , Lasers , Cor , Simulação por Computador , Processamento de Imagem Assistida por Computador , Análise Espectral/instrumentação , Análise Espectral/métodosRESUMO
We present the experimental demonstration of a new scheme for the generation of ultrashort pulse trains based on free-electron-laser (FEL) emission from a multipeaked electron energy distribution. Two electron beamlets with energy difference larger than the FEL parameter ρ have been generated by illuminating the cathode with two ps-spaced laser pulses, followed by a rotation of the longitudinal phase space by velocity bunching in the linac. The resulting self-amplified spontaneous emission FEL radiation, measured through frequency-resolved optical gating diagnostics, reveals a double-peaked spectrum and a temporally modulated pulse structure.
RESUMO
We report measurements demonstrating the concept of the free-electron laser (FEL) superradiant cascade. Radiation (λ(rad) = 200 nm) at the second harmonic of a short, intense seed laser pulse (λ(seed) = 400 nm) was generated by the cascaded FEL scheme at the transition between the modulator and radiator undulator sections. The superradiance of the ultrashort pulse is confirmed by detailed measurements of the resulting spectral structure, the intensity level of the produced harmonics, and the trend of the energy growth along the undulator. These results are compared to numerical particle simulations using the FEL code GENESIS 1.3 and show a satisfactory agreement.
RESUMO
Higher order harmonic generation in a free-electron laser amplifier operating in the superradiant regime [R. H. Dicke, Phys. Rev. 93, 99 (1954).] has been observed. Superradiance has been induced by seeding a single-pass amplifier with the second harmonic of a Ti:sapphire laser, generated in a ß-Barium borate crystal, at seed intensities comparable to the free-electron laser saturation intensity. Pulse energy and spectral distributions of the harmonics up to the 11th order have been measured and compared with simulations.
RESUMO
The injection of a seed in a free-electron laser (FEL) amplifier reduces the saturation length and improves the longitudinal coherence. A cascaded FEL, operating in the high-gain harmonic-generation regime, allows us to extend the beneficial effects of the seed to shorter wavelengths. We report on the first operation of a high-gain harmonic-generation free-electron laser, seeded with harmonics generated in gas. The third harmonics of a Ti:sapphire laser, generated in a gas cell, has been amplified and up-converted to its second harmonic (λ(rad)=133 nm) in a FEL cascaded configuration based on a variable number of modulators and radiators. We studied the transition between coherent harmonic generation and superradiant regime, optimizing the laser performances with respect to the number of modulators and radiators.
RESUMO
We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.
RESUMO
The crystallization process in recently developed toothpastes, containing nanoparticles of carbonate substituted hydroxyapatite (nano-CHA), was investigated. For this purpose, the non-conventional Energy Dispersive X-Ray Diffraction technique, that demonstrated to be a powerful tool to follow in situ phase transformations, was applied, for the first time, to products of pharmaceutical-cosmetic interest. Two types of toothpastes, containing 15 and 20 wt% of nano-CHA, respectively, have been studied. It was observed that, after mixing the toothpastes with water and saliva in order to reproduce in vivo conditions, a crystallization of nano-CHA takes place. Such process occurs in a characteristic time of (22 +/- 1) min for the toothpaste containing 15 wt% of nano-CHA and of (3.9 +/- 0.5) min for the one containing 20% of nano-CHA. For both toothpastes, a 10% increase in grain dimensions was observed over an average characteristic time of (55 +/- 5) min.
Assuntos
Substitutos Ósseos/química , Carbonatos/química , Durapatita/química , Nanopartículas/química , Saliva/química , Cremes Dentais/química , Humanos , Teste de Materiais , Nanopartículas/ultraestrutura , Difração de Raios XRESUMO
The aim of this work was to study the phase transformation during the setting reaction of two calcium phosphate bone cements based on either alpha tricalcium phosphate (alpha-TCP) or tetracalcium phosphate (TetCP) initial solid phase, and a magnesium carbonate-phosphoric acid solution as the hardening liquid. Low molecular weight (38.2 kDa) chitosan was used to retard the cement's setting reaction. To follow the kinetics of the phase development, an energy dispersive X-ray diffraction technique was applied. This technique allowed the collection of diffraction patterns from the cement pastes in situ starting from 1 min of the setting process. In the case of the TetCP-based cement, the appearance and evolution of an intermediate phase was detected.
Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Quitosana/química , Difração de Raios X , Microscopia Eletrônica de Varredura , Fatores de TempoRESUMO
Synthetic carbonated apatite ceramics are considered as promising alternative to auto- and allograft materials for bone substitute. The aim of this study was to investigate the thermal stability of an AB-type carbonated apatite in the wide temperature range. The data on the thermal stability have to allow the conditions of the sintering of the ceramics to be controlled. Initial carbonated apatite powders were prepared by interaction between calcium oxide and ammonium hydrogen phosphate with addition of ammonium carbonate. Decomposition process was monitored by infra red spectroscopy, weight loss and X-ray diffraction of solid, and by infra red analysis of condensed gas phase resulted from the thermal decomposition of the sample in equilibrium conditions. Features of carbon monoxide and carbon dioxide release were revealed. The synthesized AB-type carbonated apatite is started to decompose at about 400 degrees Celsius releasing mainly carbon dioxide, but retained some carbonate groups and apatite structure at the temperature 1100 degrees Celsius useful to prepare porous carbonate-apatite ceramics intended for bone tissue engineering scaffolds.
Assuntos
Apatitas/análise , Materiais Biocompatíveis/química , Substitutos Ósseos , Carbonatos/análise , Durapatita/química , Compostos de Cálcio/química , Carbonatos/química , Óxidos/química , Fosfatos/química , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios XRESUMO
The mineral constituent of bone tissue is a carbonate-substituted apatite (CHA). The thermal stability of the CHA has been revealed to depend on the substitution type and degree, although relatively little is known about this behavior. The aim of this study was to investigate the carbonate loss from synthetic CHAs in equilibrium conditions in a wide temperature range. An approach based on FTIR spectroscopy of condensed gas phase was applied to evaluate the CO and CO2 release with increasing temperature. Four different CHAs were studied, which were prepared by either precipitation from solution or the solid-state interaction. The samples differ from each other by the substitution degree. In one of the samples calcium was partially substituted by magnesium. Decomposition was shown to start at surprisingly low temperature, about 400 degrees C, and the CO content increases monotonously with the increase of temperature. The CO2 content goes through a maximum due to its decomposition into carbon monoxide and oxygen, the temperature of this maximum being strongly dependent on the chemical synthesis route. Therefore, control of the sintering atmosphere with respect to the CO2/CO ratio is needed when preparing the carbonated apatite bioceramics.
Assuntos
Apatitas/análise , Carbonatos/análise , Carbono/análise , Magnésio , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios XRESUMO
The sublimation of cobalt trifluoride was studied using the Knudsen effusion method combined with mass spectrometry. The pressure of F was directly measured for decomposition of CoF(3)(s) into CoF(2)(s). The average kinetic energy of CoF(2)(+), CoF(+) and Co(+) fragment ions was determined and the relative ionisation cross section curves measured from 6 eV to 100 eV. Thermodynamic functions of gaseous CoF(3) and Co(2)F(6), were evaluated from geometrical and vibrational parameters provided from theoretical calculations. Heats of formation of CoF(3)(s), CoF(3)(g), Co(2)F(6)(g) were established as (-784 +/- 6) kJ/mol, (-565 +/- 11) kJ/mol and (-1289 +/- 22) kJ/mol, respectively.
RESUMO
Knudsen cell mass spectrometry was applied to the evaluation of the ionization efficiency curves for the ions originating from CoF(4) molecules. Cobalt tetrafluoride was obtained in the gas phase over the CoF(3)(s)-TbF(4)(s) system in the temperature range from 640 to 690 K. From the ionization efficiency curves the appearance energies of the ions formed from the CoF(4) molecules were determined by means of Vogt's deconvolution method. Clausius-Clapeyron plots for the ions from CoF(4) molecules were measured. Evaporation of pure CoF(3)(s) was carried out, and the appearance energies of the ions formed from CoF(3) molecules were determined. The ionization energies for CoF(4) and CoF(3) molecules were found to be (14.3 +/- 0.2) and (13.3 +/- 0.1) eV, respectively.