Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Rep Med ; 4(12): 101306, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38052214

RESUMO

Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.


Assuntos
Caquexia , Neoplasias , Humanos , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Tacrolimo/metabolismo , Tacrolimo/farmacologia , Músculo Esquelético/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias/patologia
2.
EMBO Rep ; 23(4): e53746, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199910

RESUMO

Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Oncogenesis ; 10(1): 1, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419963

RESUMO

Cachexia is a severe complication of cancer that adversely affects the course of the disease, with currently no effective treatments. It is characterized by a progressive atrophy of skeletal muscle and adipose tissue, resulting in weight loss, a reduced quality of life, and a shortened life expectancy. Although the cachectic condition primarily affects the skeletal muscle, a tissue that accounts for ~40% of total body weight, cachexia is considered a multi-organ disease that involves different tissues and organs, among which the cardiac muscle stands out for its relevance. Patients with cancer often experience severe cardiac abnormalities and manifest symptoms that are indicative of chronic heart failure, including fatigue, shortness of breath, and impaired exercise tolerance. Furthermore, cardiovascular complications are among the major causes of death in cancer patients who experienced cachexia. The lack of effective treatments for cancer cachexia underscores the need to improve our understanding of the underlying mechanisms. Increasing evidence links the wasting of the cardiac and skeletal muscles to metabolic alterations, primarily increased energy expenditure, and to increased proteolysis, ensuing from activation of the major proteolytic machineries of the cell, including ubiquitin-dependent proteolysis and autophagy. This review aims at providing an overview of the key mechanisms of cancer cachexia, with a major focus on those that are shared by the skeletal and cardiac muscles.

4.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964732

RESUMO

Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.


Assuntos
Caveolina 1/metabolismo , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Listeriose/microbiologia , Animais , Biomarcadores , Linhagem Celular , Imunofluorescência , Humanos
5.
Trends Cell Biol ; 30(1): 32-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806419

RESUMO

The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Cílios/metabolismo , Humanos
6.
Cell Mol Life Sci ; 76(10): 1987-2002, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734065

RESUMO

At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.


Assuntos
Barreira Hematoencefálica , Claudina-5/genética , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo , Adulto , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Células Cultivadas , Claudina-5/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
7.
Curr Biol ; 29(2): 242-255.e6, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30595521

RESUMO

The Hippo pathway plays major roles in development, regeneration, and cancer. Its activity is tightly regulated by both diffusible chemical ligands and mechanical stimuli. The pathway consists of a series of kinases that can control the sub-cellular localization and stability of YAP or TAZ, homologous transcriptional co-factors. Caveolae, small (60-100 nm) bulb-like invaginations of the plasma membrane, are comprised predominantly of caveolin and cavin proteins and can respond to mechanical stimuli. Here, we show that YAP/TAZ, the major transcriptional mediators of the Hippo pathway, are critical for expression of caveolae components and therefore caveolae formation in both mammalian cells and zebrafish. In essence, without YAP/TAZ, the cell loses an entire organelle. CAVEOLIN1 and CAVIN1, the two essential caveolar genes, are direct target genes of YAP/TAZ, regulated via TEA domain (TEAD) transcription factors. Notably, YAP/TAZ become nuclear enriched and facilitate target gene transcription in cells with diminished levels of caveolae. Furthermore, caveolar-mediated shear stress response activates YAP/TAZ. These data link caveolae to Hippo signaling in the context of cellular responses to mechanical stimuli and suggest activity-based feedback regulation between components of caveolae and the outputs of the Hippo pathway.


Assuntos
Cavéolas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Células HEK293 , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Methods Mol Biol ; 1893: 97-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30565128

RESUMO

Immunocytochemistry enables determination of cellular localization and relative abundance of proteins. This protocol describes a rapid and cost-effective approach to study the cellular localization of YAP (and TAZ), the transcriptional co activators of the Hippo pathway, in mammalian cells. Cells are seeded onto coated cover slips, cultivated and treated as required. Subsequently, they are chemically fixed, and cellular proteins are fluorescently labeled by means of specific antibodies. Multiplexing antibodies enables ascertaining the subcellular localization of YAP and TAZ and thereby also the activation state of the Hippo pathway in various cell types.


Assuntos
Imunofluorescência , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Microscopia
9.
Anal Biochem ; 550: 54-60, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678761

RESUMO

Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye.


Assuntos
DNA Bacteriano/genética , Legionella pneumophila/genética , Doença dos Legionários , Reação em Cadeia da Polimerase Multiplex/métodos , Pneumonia Estafilocócica , Staphylococcus aureus/genética , Humanos , Doença dos Legionários/diagnóstico , Doença dos Legionários/genética , Pneumonia Estafilocócica/diagnóstico , Pneumonia Estafilocócica/genética
10.
Mikrochim Acta ; 181(13-14): 1715-1723, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25253912

RESUMO

We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

11.
Malar J ; 13: 99, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24629133

RESUMO

BACKGROUND: Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing. METHODS: A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38°C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay. RESULTS: The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n=77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45°C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. CONCLUSIONS: Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in resource-limited settings. The system requires none or only little instrumentation for the nucleic acid amplification reaction and the read-out is possible with the naked eye. Showing the same sensitivity and specificity as comparable diagnostic methods but simultaneously increasing reaction speed and dramatically reducing assay requirements, the method has potential to become a true point-of-care test for the malaria parasite.


Assuntos
Cromatografia/métodos , Malária Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA