Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38902476

RESUMO

Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.

2.
Biosensors (Basel) ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998151

RESUMO

The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Tecnologia
3.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188851, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535512

RESUMO

Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Císticas, Mucinosas e Serosas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Císticas, Mucinosas e Serosas/genética , Mutação , Neoplasias Pancreáticas
4.
Cell Death Dis ; 13(10): 839, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180487

RESUMO

Acinar-to-ductal metaplasia (ADM) is a precursor lesion of pancreatic ductal adenocarcinoma (PDAC); however, the regulators of the ADM-mediated PDAC development and its targeting are poorly understood. RNA polymerase II-associated factor 1 (PAF1) maintains cancer stem cells leading to the aggressiveness of PDAC. In this study, we investigated whether PAF1 is required for the YAP1-mediated PDAC development and whether CA3 and verteporfin, small molecule inhibitors of YAP1/TEAD transcriptional activity, diminish pancreatic cancer (PC) cell growth by targeting the PAF1/YAP1 axis. Here, we demonstrated that PAF1 co-expresses and interacts with YAP1 specifically in metaplastic ducts of mouse cerulein- or KrasG12D-induced ADM and human PDAC but not in the normal pancreas. PAF1 knockdown (KD) reduced SOX9 in PC cells, and the PC cells showed elevated PAF1/YAP1 complex recruitment to the promoter of SOX9. The PAF1 KD reduced the 8xTEAD and SOX9 promoter-luciferase reporter activities in the mouse KC (KrasG12D; Pdx-1 Cre) cells and human PC cells, indicating that the PAF1 is required for the YAP1-mediated development of ADM and PC. Moreover, treatment with CA3 or verteporfin reduced the expressions of PAF1, YAP1, TEAD4, and SOX9 and decreased colony formation and stemness in KC and PC cells. CA3 treatment also reduced the viability and proliferation of PC cells and diminished the duct-like structures in KC acinar explants. CA3 or verteporfin treatment decreased the recruitment of the PAF1/YAP1 complex to the SOX9 promoter in PC cells and reduced the 8xTEAD and SOX9 promoter-luciferase reporter activities in KC and PC cells. Overall, PAF1 cooperates with YAP1 during ADM and PC development, and verteporfin and CA3 inhibit ADM and PC cell growth by targeting the PAF1/YAP1/SOX9 axis in vitro and ex vivo models. This study identified a regulatory axis of PDAC initiation and its targeting, paving the way for developing targeted therapeutic strategies for pancreatic cancer patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Acinares/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Ceruletídeo , Proteínas de Ligação a DNA/metabolismo , Humanos , Luciferases/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Verteporfina/farmacologia , Proteínas de Sinalização YAP , Neoplasias Pancreáticas
6.
Biomed Pharmacother ; 144: 112312, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678726

RESUMO

BACKGROUND: Retrospective studies revealed that cigarette smoking enhances risk of incidence and worsens prognosis in pancreatic cancer (PC) patients. Poor prognosis in smoker cohort of PC patients indicates prevalence of cigarette smoke stimulated survival mechanisms yet to be explored in PC. In this study, cigarette smoke induced metabolic pathways were explored and targeted in PC. METHODS: Human pancreatic ductal adenocarcinoma cell (PDAC) lines, genetically engineered mice models (GEMMs), mass spectrometry based heavy isotope-based metabolite analysis, cytotoxicity assays and Nuclear factor kappa-B (NF-kB) targeting were utilized in this study. Cigarette smoke extract (CSE) was prepared fresh each day by bubbling cell culture media with the smoke emitted from 85 mm, filtered, Code 1R6F reference cigarettes and used for in vitro procedures. High dose cigarette smoke exposure of GEMMs was achieved by daily exposure of animals to similar cigarettes, 6 h/day for a total period of 180 days. FINDINGS: We observed that PDAC cells upregulate glutathione anabolism through cysteine uptake and glutamate cysteine ligase (GCLM), supporting survival, upon CSE exposure. In vivo, cigarette smoke exposure leads to concomitant upregulation of GCLM and activated NF-kB in the PDAC consistent with in vitro, in CSE-exposed PDAC. Finally, either inhibition of NF-kB or depletion of cysteine impaired PDAC cell survival in cigarette smoke exposed conditions through suppression of glutathione and ROS enhancement, reverted by glutathione supplementation. INTERPRETATION: Our findings demonstrate scope for targeting smoke induced, NF-kB mediated, cysteine and glutathione metabolism for improving the survival of smoke addicted PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Glutamato-Cisteína Ligase/metabolismo , Humanos , Metaboloma , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo
7.
Cancers (Basel) ; 13(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206370

RESUMO

Niclosamide (Nic), an FDA-approved anthelmintic drug, is reported to have anti-cancer efficacy and is being assessed in clinical trials for various solid tumors. Based on its ability to target multiple signaling pathways, in the present study, we evaluated the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. We observed an anti-cancerous effect of this drug as shown by the G0/G1 phase cell cycle arrest, inhibition of PC cell viability, colony formation, and migration. Our results revealed the involvement of mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. Significant reduction of Nic-induced reactive oxygen species (ROS) and cell death in the presence of a selective autophagy inhibitor spautin-1 demonstrated autophagy as a major contributor to Nic-mediated cell death. Mechanistically, Nic inhibited the interaction between BCL2 and Beclin-1 that supported the crosstalk of autophagy and apoptosis. Further, Nic treatment resulted in Gsk3ß inactivation by phosphorylating its Ser-9 residue leading to upregulation of Sufu and Gli3, thereby negatively impacting hedgehog signaling and cell survival. Nic induced autophagic cell death, and p-Gsk3b mediated Sufu/Gli3 cascade was further confirmed by Gsk3ß activator, LY-294002, by rescuing inactivation of Hh signaling upon Nic treatment. These results suggested the involvement of a non-canonical mechanism of Hh signaling, where p-Gsk3ß acts as a negative regulator of Hh/Gli1 cascade and a positive regulator of autophagy-mediated cell death. Overall, this study established the therapeutic efficacy of Nic for PC by targeting p-Gsk3ß mediated non-canonical Hh signaling and promoting mTORC1-dependent autophagy and cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA