Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 14(1): 1998, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032404

RESUMO

Engrailed2 (En2) is a transcription factor that transfers from cell to cell through unconventional pathways. The poorly understood internalization mechanism of this cationic protein is proposed to require an initial interaction with cell-surface glycosaminoglycans (GAGs). To decipher the role of GAGs in En2 internalization, we have quantified the entry of its homeodomain region in model cells that differ in their content in cell-surface GAGs. The binding specificity to GAGs and the influence of this interaction on the structure and dynamics of En2 was also investigated at the amino acid level. Our results show that a high-affinity GAG-binding sequence (RKPKKKNPNKEDKRPR), upstream of the homeodomain, controls En2 internalization through selective interactions with highly-sulfated heparan sulfate GAGs. Our data underline the functional importance of the intrinsically disordered basic region upstream of En2 internalization domain, and demonstrate the critical role of GAGs as an entry gate, finely tuning homeoprotein capacity to internalize into cells.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Fatores de Transcrição , Proteínas de Homeodomínio/genética , Sulfatos , Sulfatos de Condroitina/metabolismo
2.
ACS Chem Biol ; 17(6): 1427-1439, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35608167

RESUMO

Cell-penetrating peptides cross cell membranes through various parallel internalization pathways. Herein, we analyze the role of the negatively charged lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the internalization of Penetratin. Contributions of both inner leaflet and outer leaflet pools of PI(4,5)P2 were revealed by quantifying the internalization of Penetratin in cells treated with PI(4,5)P2 binders. Studies on model systems showed that Penetratin has a strong affinity for PI(4,5)P2 and interacts selectively with this lipid, even in the presence of other negatively charged lipids, as demonstrated by affinity photo-crosslinking experiments. Differential scanning calorimetry experiments showed that Penetratin induces lateral segregation in PI(4,5)P2-containing liposomes, which was confirmed by coarse-grained molecular dynamics simulations. NMR experiments indicated that Penetratin adopts a stabilized helical conformation in the presence of PI(4,5)P2-containing membranes, with an orientation parallel to the bilayer plane, which was also confirmed by all-atom simulations. NMR and photo-crosslinking experiments also suggest a rather shallow insertion of the peptide in the membrane. Put together, our findings suggest that PI(4,5)P2 is a privileged interaction partner for Penetratin and that it plays an important role in Penetratin internalization.


Assuntos
Peptídeos Penetradores de Células , Proteínas de Transporte/metabolismo , Peptídeos Penetradores de Células/metabolismo , Fosfatidilinositóis , Ligação Proteica
3.
ACS Appl Mater Interfaces ; 14(13): 15021-15034, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319860

RESUMO

The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape. However, these strategies suffer from the potential release of free peptides in the cell, and to the best of our knowledge, there is currently a lack of effective methods for the cytosolic delivery of MNPs after incubation with cells. Herein, we report the conjugation of fluorescently labeled cationic peptides to γ-Fe2O3@SiO2 core-shell nanoparticles by click chemistry to improve MNP access to the cytosol. We compare the effect of Arg9 and His4 peptides. On the one hand, Arg9 is a classical cell-penetrating peptide able to enter cells by direct translocation, and on the other hand, it has been demonstrated that sequences rich in histidine residues can promote endosomal escape, possibly by the proton sponge effect. The methodology developed here allows a high colocalization of the peptides and core-shell nanoparticles in cells and confirms that grafting peptides rich in histidine residues onto nanoparticles promotes NPs' access to the cytosol. Endosomal escape was confirmed by a calcein leakage assay and by ultrastructural analysis in transmission electron microscopy. No toxicity was observed for the peptide-nanoparticles conjugates. We also show that our conjugation strategy is compatible with the addition of multiple substrates and can thus be used for the delivery of cytoplasm-targeted therapeutics.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Peptídeos Penetradores de Células/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Fenômenos Magnéticos , Nanopartículas/química , Dióxido de Silício/metabolismo
4.
Drug Des Devel Ther ; 15: 5035-5059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949914

RESUMO

INTRODUCTION: With the aim of repositioning commercially available drugs for the inhibition of the anti-apoptotic myeloid cell leukemia protein, Mcl-1, implied in various cancers, five molecules, highlighted from a published theoretical screening, were selected to experimentally validate their affinity toward Mcl-1. RESULTS: A detailed NMR study revealed that only two of the five tested drugs, Torsemide and Deferasirox, interacted with Mcl-1. NMR data analysis allowed the complete characterization of the binding mode of both drugs to Mcl-1, including the estimation of their affinity for Mcl-1. Biological assays evidenced that the biological activity of Torsemide was lower as compared to the Deferasirox, which was able to efficiently and selectively inhibit the anti-apoptotic activity of Mcl-1. Finally, docking and molecular dynamics led to a 3D model for the Deferasirox:Mcl-1 complex and revealed the positioning of the drug in the Mcl-1 P2/P3 pockets as well as almost all synthetic Mcl-1 inhibitors. Interestingly, contrary to known synthetic Mcl-1 inhibitors which interact through Arg263, Deferasirox, establishes a salt bridge with Lys234. CONCLUSION: Deferasirox could be a potential candidate for drug repositioning as Mcl-1 inhibitor.


Assuntos
Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Deferasirox/farmacologia , Reposicionamento de Medicamentos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Deferasirox/química , Lenalidomida/química , Lenalidomida/farmacologia , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxcarbazepina/química , Oxcarbazepina/farmacologia , Risperidona/química , Risperidona/farmacologia , Torasemida/química , Torasemida/farmacologia
5.
Cells ; 9(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075246

RESUMO

The peptide ERα17p, which corresponds to the 295-311 fragment of the hinge/AF2 domains of the human estrogen receptor α (ERα), exerts apoptosis in breast cancer cells through a mechanism involving the G protein-coupled estrogen-dependent receptor GPER. Besides this receptor-mediated mechanism, we have detected a direct interaction (Kd value in the micromolar range) of this peptide with lipid vesicles mimicking the plasma membrane of eukaryotes. The reversible and not reversible pools of interacting peptide may correspond to soluble and aggregated membrane-interacting peptide populations, respectively. By using circular dichroism (CD) spectroscopy, we have shown that the interaction of the peptide with this membrane model was associated with its folding into ß sheet. A slight leakage of the 5(6)-fluorescein was also observed, indicating lipid bilayer permeability. When the peptide was incubated with living breast cancer cells at the active concentration of 10 µM, aggregates were detected at the plasma membrane under the form of spheres. This insoluble pool of peptide, which seems to result from a fibrillation process, is internalized in micrometric vacuoles under the form of fibrils, without evidence of cytotoxicity, at least at the microscopic level. This study provides new information on the interaction of ERα17p with breast cancer cell membranes as well as on its mechanism of action, with respect to direct membrane effects.


Assuntos
Neoplasias da Mama/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Fenômenos Biofísicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Bicamadas Lipídicas/química , Células MCF-7 , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ressonância de Plasmônio de Superfície
6.
Proc Natl Acad Sci U S A ; 113(7): 1901-6, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831115

RESUMO

Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.


Assuntos
Aldeído Liases/metabolismo , Autofagia , Legionella pneumophila/enzimologia , Esfingolipídeos/metabolismo , Aldeído Liases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Doença dos Legionários/imunologia , Camundongos , Conformação Proteica
7.
Genome Biol ; 15(11): 505, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25370836

RESUMO

BACKGROUND: The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires' disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. RESULTS: We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. CONCLUSIONS: Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.


Assuntos
Genoma Bacteriano , Sequências Repetitivas Dispersas/genética , Legionella pneumophila/genética , Doença dos Legionários/genética , Amoeba/microbiologia , Sequência de Bases , Linhagem Celular , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Anotação de Sequência Molecular , Especificidade da Espécie
8.
Environ Microbiol ; 16(2): 359-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23957615

RESUMO

Legionella pneumophila uses aquatic protozoa as replication niche and protection from harsh environments. Although L. pneumophila is not known to have a circadian clock, it encodes homologues of the KaiBC proteins of Cyanobacteria that regulate circadian gene expression. We show that L. pneumophila kaiB, kaiC and the downstream gene lpp1114, are transcribed as a unit under the control of the stress sigma factor RpoS. KaiC and KaiB of L. pneumophila do not interact as evidenced by yeast and bacterial two-hybrid analyses. Fusion of the C-terminal residues of cyanobacterial KaiB to Legionella KaiB restores their interaction. In contrast, KaiC of L. pneumophila conserved autophosphorylation activity, but KaiB does not trigger the dephosphorylation of KaiC like in Cyanobacteria. The crystal structure of L. pneumophila KaiB suggests that it is an oxidoreductase-like protein with a typical thioredoxin fold. Indeed, mutant analyses revealed that the kai operon-encoded proteins increase fitness of L. pneumophila in competitive environments, and confer higher resistance to oxidative and sodium stress. The phylogenetic analysis indicates that L. pneumophila KaiBC resemble Synechosystis KaiC2B2 and not circadian KaiB1C1. Thus, the L. pneumophila Kai proteins do not encode a circadian clock, but enhance stress resistance and adaption to changes in the environments.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Legionella pneumophila/genética , Óperon , Estresse Fisiológico , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Legionella pneumophila/fisiologia , Fosforilação , Filogenia , Estrutura Terciária de Proteína , RNA Bacteriano/genética
9.
RNA Biol ; 9(4): 503-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22546937

RESUMO

The bacterium Legionella pneumophila is found ubiquitously in aquatic environments and can cause a severe pneumonia in humans called Legionnaires' disease. How this bacterium switches from intracellular to extracellular life and adapts to different hosts and environmental conditions is only partly understood. Here we used RNA deep sequencing from exponentially (replicative) and post exponentially (virulent) grown L. pneumophila to analyze the transcriptional landscape of its entire genome. We established the complete operon map and defined 2561 primary transcriptional start sites (TSS). Interestingly, 187 of the 1805 TSS of protein-coding genes contained tandem promoters of which 93 show alternative usage dependent on the growth phase. Similarly, over 60% of 713 here identified ncRNAs are phase dependently regulated. Analysis of their conservation among the seven L. pneumophila genomes sequenced revealed many strain specific differences suggesting that L. pneumophila contains a highly dynamic pool of ncRNAs. Analysis of six ncRNAs exhibiting the same expression pattern as virulence genes showed that two, Lppnc0584 and Lppnc0405 are indeed involved in intracellular growth of L. pneumophila in A. castellanii. Furthermore, L. pneumophila encodes a small RNA named RsmX that functions together with RsmY and RsmZ in the LetA-CsrA regulatory pathway, crucial for the switch to the virulent phenotype. Together our data provide new insight into the transcriptional organization of the L. pneumophila genome, identified many new ncRNAs and will provide a framework for the understanding of virulence and adaptation properties of L. pneumophila.


Assuntos
Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Regiões 5' não Traduzidas , Acanthamoeba castellanii/microbiologia , Proteínas de Bactérias/genética , Sequência de Bases , Mapeamento Cromossômico , Sequência Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/patogenicidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Óperon , Regiões Promotoras Genéticas , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Transcriptoma , Virulência/genética
10.
Biochem J ; 445(2): 219-28, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22545684

RESUMO

Legionella pneumophila is an opportunistic pathogen and the causative agent of Legionnaires' disease. Despite being exposed to many chemical compounds in its natural and man-made habitats (natural aquatic biotopes and man-made water systems), L. pneumophila is able to adapt and survive in these environments. The molecular mechanisms by which this bacterium detoxifies these chemicals remain poorly understood. In particular, the expression and functions of XMEs (xenobiotic-metabolizing enzymes) that could contribute to chemical detoxification in L. pneumophila have been poorly documented at the molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to detoxify aromatic amine chemicals and grow in their presence. The present study provides a new enzymatic mechanism by which the opportunistic pathogen L. pneumophila biotransforms and detoxifies toxic aromatic chemicals. These data also emphasize the role of XMEs in the environmental adaptation of certain prokaryotes.


Assuntos
Aminas/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Legionella pneumophila/enzimologia , Arilamina N-Acetiltransferase/genética , Western Blotting , Dicroísmo Circular , Teste de Complementação Genética , Variação Genética , Inativação Metabólica , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Filogenia , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
PLoS Genet ; 6(2): e1000851, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20174605

RESUMO

Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.


Assuntos
Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Legionella longbeachae/genética , Legionella longbeachae/patogenicidade , Doença dos Legionários/microbiologia , Acanthamoeba castellanii/microbiologia , Adaptação Fisiológica/genética , Animais , Cápsulas Bacterianas/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Pareamento de Bases/genética , Sequência Conservada , Ecossistema , Feminino , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella longbeachae/crescimento & desenvolvimento , Legionella longbeachae/ultraestrutura , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/patogenicidade , Camundongos , Microbiologia do Solo , Especificidade por Substrato/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA