Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neural Syst ; 34(2): 2450007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273799

RESUMO

Background and Objective: Alzheimer's disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer's disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer's disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA