Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 43(5): 114175, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691456

RESUMO

Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem Celular Tumoral , Fatores de Transcrição de Domínio TEA/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células
2.
EMBO J ; 42(8): e111500, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36530167

RESUMO

Both an increased frequency of chromosome missegregation (chromosomal instability, CIN) and the presence of an abnormal complement of chromosomes (aneuploidy) are hallmarks of cancer. To better understand how cells are able to adapt to high levels of chromosomal instability, we previously examined yeast cells that were deleted of the gene BIR1, a member of the chromosomal passenger complex (CPC). We found bir1Δ cells quickly adapted by acquiring specific combinations of beneficial aneuploidies. In this study, we monitored these yeast strains for longer periods of time to determine how cells adapt to high levels of both CIN and aneuploidy in the long term. We identify suppressor mutations that mitigate the chromosome missegregation phenotype. The mutated proteins fall into four main categories: outer kinetochore subunits, the SCFCdc4 ubiquitin ligase complex, the mitotic kinase Mps1, and the CPC itself. The identified suppressor mutations functioned by reducing chromosomal instability rather than alleviating the negative effects of aneuploidy. Following the accumulation of suppressor point mutations, the number of beneficial aneuploidies decreased. These experiments demonstrate a time line of adaptation to high rates of CIN.


Assuntos
Proteínas F-Box , Neoplasias , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Aneuploidia , Instabilidade Cromossômica/genética , Cinetocoros/metabolismo , Neoplasias/genética , Segregação de Cromossomos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas F-Box/genética
3.
Cell Rep ; 39(2): 110636, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417719

RESUMO

Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets. Our analysis reveals >2,000 candidate dependencies, several of which we validate experimentally, including CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and RPP25-RPP25L. We provide evidence that RPP25L can physically and functionally compensate for the absence of RPP25 as a member of the RNase P/MRP complexes in tRNA processing. Our analysis also reveals unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-encoded paralogs, such as ZFX-ZFY, DDX3X-DDX3Y, and EIF1AX-EIF1AY, are functionally linked. Tumor cell lines from male patients with loss of chromosome Y become dependent on the chrX-encoded gene. We propose targeting of chrX-encoded paralogs as a general therapeutic strategy for human tumors that have lost the Y chromosome.


Assuntos
Neoplasias , Oncogenes , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Cromossomos Sexuais/metabolismo , Cromossomo X , Cromossomo Y
4.
Life Sci Alliance ; 4(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199508

RESUMO

Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517-1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional ß-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.


Assuntos
Domínio Catalítico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Cristalização , DNA/metabolismo , Dano ao DNA/genética , Inativação Gênica , Células HCT116 , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transfecção , Zinco/metabolismo , Quinase 1 Polo-Like
5.
Genes Dev ; 32(23-24): 1485-1498, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463904

RESUMO

Cells that contain an abnormal number of chromosomes are called aneuploid. High rates of aneuploidy in cancer are correlated with an increased frequency of chromosome missegregation, termed chromosomal instability (CIN). Both high levels of aneuploidy and CIN are associated with cancers that are resistant to treatment. Although aneuploidy and CIN are typically detrimental to cell growth, they can aid in adaptation to selective pressures. Here, we induced extremely high rates of chromosome missegregation in yeast to determine how cells adapt to CIN over time. We found that adaptation to CIN occurs initially through many different individual chromosomal aneuploidies. Interestingly, the adapted yeast strains acquire complex karyotypes with specific subsets of the beneficial aneuploid chromosomes. These complex aneuploidy patterns are governed by synthetic genetic interactions between individual chromosomal abnormalities, which we refer to as chromosome copy number interactions (CCNIs). Given enough time, distinct karyotypic patterns in separate yeast populations converge on a refined complex aneuploid state. Surprisingly, some chromosomal aneuploidies that provided an advantage early on in adaptation are eventually lost due to negative CCNIs with even more beneficial aneuploid chromosome combinations. Together, our results show how cells adapt by obtaining specific complex aneuploid karyotypes in the presence of CIN.


Assuntos
Aneuploidia , Segregação de Cromossomos/genética , Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Instabilidade Cromossômica , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA