Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217318

RESUMO

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Camundongos , Proteômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
2.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852800

RESUMO

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Neuropatologia/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios/metabolismo
3.
Gastroenterology ; 153(5): 1404-1415, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802563

RESUMO

BACKGROUND & AIMS: Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS: We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS: We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of ß-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS: In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.


Assuntos
Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Triglicerídeos/biossíntese , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo/metabolismo , Animais , Antagomirs/genética , Antagomirs/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Dioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Masculino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
4.
BMC Dev Biol ; 15: 18, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25888280

RESUMO

BACKGROUND: The developing eye receives blood supply from two vascular systems, the intraocular hyaloid system and the superficial choroidal vessels. In zebrafish, a highly stereotypic and simple set of vessels develops on the surface of the eye prior to development of choroidal vessels. The origins and formation of this so-called superficial system have not been described. RESULTS: We have analyzed the development of superficial vessels by time-lapse imaging and identified their origins by photoconversion experiments in kdrl:Kaede transgenic embryos. We show that the entire superficial system is derived from a venous origin, and surprisingly, we find that the hyaloid system has, in addition to its previously described arterial origin, a venous origin for specific vessels. Despite arising solely from a vein, one of the vessels in the superficial system, the nasal radial vessel (NRV), appears to acquire an arterial identity while growing over the nasal aspect of the eye and this happens in a blood flow-independent manner. CONCLUSIONS: Our results provide a thorough analysis of the early development and origins of zebrafish ocular vessels and establish the superficial vasculature as a model for studying vascular patterning in the context of the developing eye.


Assuntos
Vasos Sanguíneos/embriologia , Olho/irrigação sanguínea , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA