Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 869090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586213

RESUMO

Symbiotic fungi in the genus Trichoderma can induce abiotic stress tolerance in crops. The beneficial effects of Trichoderma on water deficit stress are poorly understood and may be isolate-specific. Our objective was to evaluate a collection of Nepalese Trichoderma isolates and their efficacy to improve tomato (Solanum lycopersicum) growth under water deficit. Variable growth in low moisture environments was observed among Trichoderma isolates from Nepal, Ohio, and commercial sources using in vitro assays. The overall performance of the population decreased when cultured under conditions of decreasing matric water potential (0.0, -2.8, -4.8, and -8.5 Ψ). Twelve isolates were selected for evaluation for their potential to elicit drought tolerance in greenhouse-grown 'Roma Organic' tomatoes. Plants treated with T. asperelloides-NT33 had higher shoot weight than the non-inoculated control (T0) under water deficit stress conditions. Further, the stress-reducing efficacy of isolates T. asperelloides-NT33, T. asperellum-NT16, T. asperelloides-NT3, and commercial T. harzianum-T22 were tested on tomato genotypes with differing tolerance to drought ['Roma Organic,' 'Jaune Flamme,' and 'Punta Banda']. The water deficit susceptible genotypes 'Roma Organic' and 'Jaune Flamme' inoculated with isolate NT33 had significantly higher shoot weight (37 and 30% respectively; p < 0.05) compared to the non-inoculated control under water deficit stress conditions. In drought tolerant 'Punta Banda,' shoot weight was also significantly greater in NT33 inoculated plants under water deficit stress conditions, but with lower magnitude difference (8%; p < 0.05). Our results demonstrate differences in the ability of Trichoderma isolates to confer tolerance to water deficit in tomato with NT33 potentially relieving stress. Tomato genotypes also play a role in the outcome of interactions with the Trichoderma isolates we tested.

2.
Biomed Res Int ; 2017: 7148076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29124068

RESUMO

Background. Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g-1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest (P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g-1, resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g-1, resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g-1, resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g-1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation (P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Concentração de Íons de Hidrogênio , Nepal , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA