Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724868

RESUMO

Solvatochromic studies in conjunction with NCQDs and analysis of material at different pH levels provide valuable insights about the process of metal ion sensing. Metal ion sensing holds significant importance in various fields like environment monitoring, biomedical diagnostics and various industrial purpose. The detection of metal ions by mixing the nitrogen-doped quantum dots (NCQDs) in the solvent at different pH levels for the analysis of the photoluminescence spectra is the unique property to achieve selective metal ion detection. In present study, the synthesis of NCQDs was performed by the use of flowers of Tecoma stans. The synthesis of NCQDs to best of our knowledge using flowers of Tecoma stans as natural carbon source via hydrothermal process has been done for the first time. The NCQDs exhibit absorption bands ranging from 190 to 450 nm, with the energy band gap varying from 3.55 to 5.42 eV when mixed with different solvent such as, 1-4 dioxane, acetone, acetonitrile, ethyl- acetate, ethanol, methanol and toluene. The fluorescence spectra exhibited highly intense range from approximately 390 to 680 nm across various solvents. XRD analysis further confirmed the crystalline nature of the particles with an average size of 6.96 nm. Different peak positions of the FTIR spectra support functional groups having C-H stretching, C = O (carbonyl) stretching, and C = C stretching vibrations. In the study a notable solvatochromic shift was observed, indicating sensitivity to change in solvent polarity. Additionally, the investigation of the ratio of ground to excited state dipole moment based on solvatochromic shift yielded a value of 3.30. This provide valuable information about optical and electronic properties of NCQDs. Overall, our study sheds light on the unique properties of NCQDs synthesized from Tecoma stans flowers and their potential applications in metal ion sensing, pH probing, and solvent polarity studies.

2.
Vaccines (Basel) ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560537

RESUMO

Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.

3.
Mol Pharm ; 18(10): 3832-3842, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34499836

RESUMO

Use of tumor-associated antigens for cancer immunotherapy is limited due to their poor in vivo stability and low cellular uptake. Delivery of antigenic peptides using synthetic polymer-based nanostructures has been actively pursued but with limited success. Peptide-based nanostructures hold much promise as delivery vehicles due to their easy design and synthesis and inherent biocompatibility. Here, we report self-assembly of a dipeptide containing a non-natural amino acid, α,ß-dehydrophenylalanine (ΔF), into nanotubes, which efficiently entrapped a MAGE-3-derived peptide (M3). M3 entrapped in F-ΔF nanotubes was more stable to a nonspecific protease treatment and both F-ΔF and F-ΔF-M3 showed no cellular toxicity for four cancerous and noncancerous cell lines used. F-ΔF-M3 showed significantly higher cellular uptake in RAW 267.4 macrophage cells compared to M3 alone and also induced in vitro maturation of dendritic cells (DCs). Immunization of mice with F-ΔF-M3 selected a higher number of IFN-γ secreting CD8+ T cells and CD4+ T compared to M3 alone. On day 21, a tumor growth inhibition ratio (TGI, %) of 41% was observed in a murine melanoma model. These results indicate that F-ΔF nanotubes are highly biocompatible, efficiently delivered M3 to generate cytotoxic T lymphocytes responses, and able to protect M3 from degradation under in vivo conditions. The F-ΔF dipeptide-based nanotubes may be considered as a good platform for further development as delivery agents.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Testículo/imunologia , Animais , Humanos , Imunoterapia/métodos , Células MCF-7 , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanotubos de Peptídeos , Transplante de Neoplasias , Células RAW 264.7
4.
iScience ; 23(7): 101322, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32688283

RESUMO

Precise regulation of innate immunity is crucial for development of appropriate host immunity against microbial infections and maintenance of immune homeostasis. MicroRNAs are small non-coding RNAs, post-transcriptional regulator of multiple genes, and act as a rheostat for protein expression. Here, we identified microRNA-30e-5p induced by hepatitis B virus and other viruses that act as a master regulator for innate immunity. Moreover, pegylated interferons treatment of patients with HBV for viral reduction also reduces miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in patients with systemic lupus erythematosus (SLE) and mouse model. Mechanistically, miR-30e targets multiple negative regulators of innate immune signaling and enhances immune responses. Furthermore, sequestering of miR-30e in patients with SLE and mouse model significantly reduces type-I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA