Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microorganisms ; 12(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792850

RESUMO

The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers' metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18-35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection.

2.
Genom Data ; 14: 24-31, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28840100

RESUMO

The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis-regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.

3.
PLoS One ; 10(9): e0137391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382944

RESUMO

Gene model annotations are important community resources that ensure comparability and reproducibility of analyses and are typically the first step for functional annotation of genomic regions. Without up-to-date genome annotations, genome sequences cannot be used to maximum advantage. It is therefore essential to regularly update gene annotations by integrating the latest information to guarantee that reference annotations can remain a common basis for various types of analyses. Here, we report an improvement of the Arabidopsis lyrata gene annotation using extensive RNA-seq data. This new annotation consists of 31,132 protein coding gene models in addition to 2,089 genes with high similarity to transposable elements. Overall, ~87% of the gene models are corroborated by evidence of expression and 2,235 of these models feature multiple transcripts. Our updated gene annotation corrects hundreds of incorrectly split or merged gene models in the original annotation, and as a result the identification of alternative splicing events and differential isoform usage are vastly improved.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Anotação de Sequência Molecular , Processamento Alternativo , Brassicaceae/genética , Elementos de DNA Transponíveis , Genes de Plantas , Modelos Genéticos , Anotação de Sequência Molecular/métodos , Transcriptoma
4.
Genome Biol ; 16: 31, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25853185

RESUMO

BACKGROUND: The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. RESULTS: We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. CONCLUSIONS: The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Evolução Biológica , Imunoprecipitação da Cromatina , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , Genótipo , Giberelinas/farmacologia , Proteínas de Domínio MADS/genética , Meristema/efeitos dos fármacos , Meristema/genética , Dados de Sequência Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Análise de Componente Principal , Ligação Proteica/efeitos dos fármacos , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
5.
Nat Plants ; 1: 14023, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27246759

RESUMO

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.

6.
PLoS One ; 9(10): e109715, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290312

RESUMO

UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors. This modification regulates various functions like detoxification of xenobiotics, hormone homeostasis, and biosynthesis of secondary metabolites. Here, we describe the identification of 96 UGT genes in Cicer arietinum (CaUGT) and report their tissue-specific differential expression based on publically available RNA-seq and expressed sequence tag data. This analysis has established medium to high expression of 84 CaUGTs and low expression of 12 CaUGTs. We identified several closely related orthologs of CaUGTs in other genomes and compared their exon-intron arrangement. An attempt was made to assign functional specificity to chickpea UGTs by comparing substrate binding sites with experimentally determined specificity. These findings will assist in precise selection of candidate genes for various applications and understanding functional genomics of chickpea.


Assuntos
Cromossomos de Plantas/química , Cicer/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glicosiltransferases/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cicer/classificação , Cicer/enzimologia , Éxons , Etiquetas de Sequências Expressas , Glicosiltransferases/metabolismo , Íntrons , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA
7.
Elife ; 2: e01426, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24347547

RESUMO

Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25-50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001.


Assuntos
Arabidopsis/genética , Troca Genética , Conversão Gênica , Genoma de Planta , Meiose/genética , Haploidia
8.
New Phytol ; 198(4): 1165-1177, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23496690

RESUMO

· In Arabidopsis thaliana, small peptides (AtPeps) encoded by PROPEP genes act as damage-associated molecular patterns (DAMPs) that are perceived by two leucine-rich repeat receptor kinases, PEPR1 and PEPR2, to amplify defense responses. In particular, expression of PROPEP2 and PROPEP3 is strongly and rapidly induced by AtPeps, in response to bacterial, oomycete, and fungal pathogens, and microbe-associated molecular patterns (MAMPs). · The cis-regulatory modules (CRMs) within the PROPEP2 and PROPEP3 promoters that mediate MAMP responsiveness were delineated, employing parsley (Petroselinum crispum) protoplasts and transgenic A. thaliana plants harboring promoter-reporter constructs. By chromatin immunoprecipitation in vivo, DNA interactions with a specific transcription factor were detected. Furthermore, the PHASTCONS program was used to identify conserved regions of the PROPEP3 locus in different Brassicaceae species. · The major MAMP-responsive CRM within the PROPEP2 promoter is composed of several W boxes and an as1/OCS (activation sequence-1/octopine synthase) enhancer element, while in the PROPEP3 promoter the CRM is comprised of six W boxes. The WRKY33 transcription factor binds in vivo to these promoter regions in a MAMP-dependent manner. Both the position and orientation of the six W boxes are conserved within the PROPEP3 promoters of four other Brassicaceae family members. · WRKY factors are the major regulators of MAMP-induced PROPEP2 and PROPEP3 expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Bactérias/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases/genética , Sequência de Bases , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Receptores de Reconhecimento de Padrão/metabolismo , Deleção de Sequência/genética
9.
Am J Hum Genet ; 89(1): 111-20, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21737057

RESUMO

Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.


Assuntos
População Negra/genética , Variação Genética , Genética Populacional/estatística & dados numéricos , População Branca/genética , África Ocidental , Alelos , Bases de Dados Genéticas , Frequência do Gene , Marcadores Genéticos , Genótipo , Humanos , Índia , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA