Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Geod ; 95(7): 80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720451

RESUMO

Satellite altimetry and gravimetry are used to determine the mean seasonal cycle in relative sea level, a quantity relevant to coastal flooding and related applications. The main harmonics (annual, semiannual, terannual) are estimated from 25 years of gridded altimetry, while several conventional altimeter "corrections" (gravitational tide, pole tide, and inverted barometer) are restored. To transform from absolute to relative sea levels, a model of vertical land motion is developed from a high-resolution seasonal mass inversion estimated from satellite gravimetry. An adjustment for annual geocenter motion accounts for use of a center-of-mass reference frame in satellite orbit determination. A set of 544 test tide gauges, from which seasonal harmonics have been estimated from hourly measurements, is used to assess how accurately each adjustment to the altimeter data helps converge the results to true relative sea levels. At these gauges, the median annual and semiannual amplitudes are 7.1 cm and 2.2 cm, respectively. The root-mean-square differences with altimetry are 3.24 and 1.17 cm, respectively, which are reduced to 1.93 and 0.86 cm after restoration of corrections and adjustment for land motion. Example outliers highlight some limitations of present-day coastal altimetry owing to inadequate spatial resolution: upwelling and currents off Oregon and wave setup at Minamitori Island.

2.
Sci Adv ; 6(48)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33239298

RESUMO

The Moon's tidal potential is slightly asymmetric, giving rise to so-called third-degree ocean tides, which are small and never before observed on a global scale. High-precision satellite altimeters have collected sea level records for almost three decades, providing a massive database from which tiny, time-coherent signals can be extracted. Here, four third-degree tides are mapped: one diurnal, two semidiurnal, and one terdiurnal. Aside from practical benefits, such as improved tide prediction for geodesy and oceanography, the new maps reveal unique ways the ocean responds to a precisely known, but hitherto unexplored, force. An unexpected example involves the two semidiurnals, where the smaller lunar force is seen to generate the larger ocean tide, especially in the South Pacific. An explanation leads to new information about an ocean normal mode that spatially correlates with the third-degree astronomical potential. The maps also highlight previously unknown shelf resonances in all three tidal bands.

3.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

4.
J Atmos Ocean Technol ; 35(12): 2421-2435, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32020983

RESUMO

Sea level anomaly (SLA) maps are routinely produced by objective analysis of data from the constellation of satellite altimeter missions in operation since 1992. Beginning in 2014, changes in the Data Unification and Altimeter Combination System (DUACS) used to create the SLA maps resulted in improved spatial resolution of mesoscale variability, but it also increased the levels of aliased tidal variability compared to the methodology employed prior to 2014. The present work investigates the magnitude and spatial distribution of these tidal signals, which are typically smaller than 1 cm in the open ocean but can reach tens of centimeters in the coastal ocean. In the open ocean, the signals are caused by a combination of phase-locked and phase-variable baroclinic tides. In the coastal ocean, the signals are a combination of aliased high-frequency nontidal variability and aliased variability caused by erroneous tidal corrections applied to the along-track altimetry prior to objective analysis. Several low-pass and bandpass filters are implemented to reduce the tidal signals in the mapped SLA, and independent tide gauge data are used to provide an objective assessment of the performance of the filters. The filter that attenuates both the small-scale (less than 200 km) and the high-frequency (period shorter than 108 days) components of SLA removes aliased baroclinic tidal variability and improves the accuracy of tidal analysis in the open ocean while also performing acceptably in the coastal ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA