Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 32(9): 2263-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25931513

RESUMO

The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.


Assuntos
Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Expansão das Repetições de Trinucleotídeos , Animais , Evolução Molecular , Duplicação Gênica , Humanos , Filogenia , Ativação Transcricional
2.
Proc Natl Acad Sci U S A ; 106(15): 6117-22, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332797

RESUMO

Specificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79. A valine-rich region within the RCAN carboxyl region is essential for binding to the docking site in calcineurin. Although a peptide containing this sequence compromises NFAT signaling in living cells, it does not inhibit calcineurin catalytic activity directly. Instead, calcineurin catalytic activity is inhibited by a motif at the extreme C-terminal region of RCAN, which acts in cis with the docking motif. Our results therefore indicate that the inhibitory action of RCAN on calcineurin-NFAT signaling results not only from the inhibition of phosphatase activity but also from competition between NFAT and RCAN for binding to the same docking site in calcineurin. Thus, competition by substrates and modulators for a common docking site appears to be an essential mechanism in the regulation of Ca(2+)-calcineurin signaling.


Assuntos
Calcineurina/química , Calcineurina/metabolismo , Proteínas Musculares/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina/genética , Linhagem Celular , Sequência Conservada , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA