Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Ther ; 13(3): 519-533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587749

RESUMO

The number of ageing people with relapsing multiple sclerosis (RMS) is increasing. The efficacy of disease-modifying therapies (DMTs) for RMS declines with age. Also, older persons with MS may be more susceptible to infections, hospitalisations and malignancy. Aging people with MS have higher rates of comorbidities versus aged-matched controls, increasing the individual risk of disability. We review the therapeutic properties of cladribine tablets (CladT) in ageing people with RMS, with regard to their utility for allowing these individuals to cease continuous administration of a DMT (i.e. to act as an "exit therapy"). CladT is thought to be an immune reconstitution therapy, in that two short courses of oral treatment 1 year apart provide suppression of MS disease activity in responders that far outlasts the duration of treatment and post-treatment reductions in lymphocyte counts. Post hoc analyses, long-term follow-up of populations with RMS in randomised trials, and real-world evidence suggest that the efficacy of CladT is probably independent of age, although more data in the elderly are still needed. No clear adverse signals for lymphopenia or other adverse safety signals have emerged with increasing age, although immunosenescence in the setting of age-related "inflammaging" may predispose elderly patients to a higher risk of infections. Updating vaccination status is recommended, especially against pneumococci and herpes zoster for older patients, to minimise the risk of these infections. CladT may be a useful alternative treatment for ageing people with MS who often bear a burden of multiple comorbidities and polypharmacy and who are more exposed to the adverse effects of continuous immunosuppressive therapy.

2.
Microbes Infect ; 14(14): 1254-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22909902

RESUMO

Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer.


Assuntos
Receptores Purinérgicos P2/imunologia , Animais , Humanos , Inflamassomos/imunologia , Transdução de Sinais/imunologia
3.
J Biol Chem ; 287(41): 34583-95, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22891241

RESUMO

The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteólise , Receptores Purinérgicos P2X7/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Purinérgicos P2X7/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA