Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 48: 100829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39192878

RESUMO

Background: The effectiveness of radiotherapy for pancreatic cancer is debated. Patient-derived organoids (PDOs) already mimicked clinical radiation response in other cancer types, which could be valuable in pancreatic cancer as well. This study aimed to investigate whether PDOs can be used to model RT response in pancreatic cancer and to explore the presence of a dose-response correlation. Methods: PDOs derived from two pancreatic cancer patients (HUB-08-B2-022A and HUB-08-B2-026B) were irradiated with doses ranging from 0 to 40 Gray. Viability assessments were conducted after seven and 10 days by measuring ATP-levels. Results were normalized, defining the viability at 0 Gray as 100 % and an absolute viability of 0 as 0 %. The relative area under the curve (rAUC) was calculated (0 = total sensitivity, 1 = total resistance). Results: With a readout time of seven days, both HUB-08-B2-022A and HUB-08-B2-026B exhibited viability above 50 % at the highest dose of 12 Gy (rAUC of 0.79 and 0.69, respectively). With a readout time of 10 days, both PDOs showed a dose-response relation although HUB-08-B2-022A was more sensitive than HUB-08-B2-026B (rAUC of 0.37 and 0.51, respectively). Increasing the radiation dose to 40 Gy did not further affect viability, but the dose-response relation remained present (rAUC of 0.13 and 0.26, respectively). In the final experiment with a readout time of 10 days and a maximum dose of 14 Gy, the dose-response correlation was paramount in both PDOs (rAUC 0.28 and 0.45, respectively), with HUB-08-B2-022A being most sensitive. Conclusions: In this setup, both pancreatic cancer PDOs showed an irradiation dose-response correlation. These preliminary findings suggest that pancreatic cancer PDOs are suitable for assessing radiation response in vitro. Further experiments are needed to eventually simulate treatment responses to personalized treatment strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39009323

RESUMO

Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.

3.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444515

RESUMO

Immunotherapy with targeted therapeutic antibodies is often ineffective in long-term responses in cancer patients due to resistance mechanisms such as overexpression of checkpoint molecules. Similar to T lymphocytes, myeloid immune cells express inhibitory checkpoint receptors that interact with ligands overexpressed on cancer cells, contributing to treatment resistance. While CD47/SIRPα-axis inhibitors in combination with IgA therapy have shown promise, complete tumor eradication remains a challenge, indicating the presence of other checkpoints. We investigated hypersialylation on the tumor cell surface as a potential myeloid checkpoint and found that hypersialylated cancer cells inhibit neutrophil-mediated tumor killing through interactions with sialic acid-binding immunoglobulin-like lectins (Siglecs). To enhance antibody-dependent cellular cytotoxicity (ADCC) using IgA as therapeutic, we explored strategies to disrupt the interaction between tumor cell sialoglycans and Siglecs expressed on neutrophils. We identified Siglec-9 as the primary inhibitory receptor, with Siglec-7 also playing a role to a lesser extent. Blocking Siglec-9 enhanced IgA-mediated ADCC by neutrophils. Concurrent expression of multiple checkpoint ligands necessitated a multi-checkpoint-blocking approach. In certain cancer cell lines, combining CD47 blockade with desialylation improved IgA-mediated ADCC, effectively overcoming resistance that remained when blocking only one checkpoint interaction. Our findings suggest that a combination of CD47 blockade and desialylation may be necessary to optimize cancer immunotherapy, considering the upregulation of checkpoint molecules by tumor cells to evade immune surveillance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA