Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sol Phys ; 298(6): 78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325237

RESUMO

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.

2.
Astrophys J ; 879(2): 124, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690977

RESUMO

We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

3.
Philos Trans A Math Phys Eng Sci ; 373(2041)2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25848083

RESUMO

Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.

4.
Science ; 342(6164): 1346-8, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24337291

RESUMO

Phosphorus ((31)P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here, we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ((56)Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.


Assuntos
Exobiologia , Fósforo/análise , Planetas , Espectroscopia de Luz Próxima ao Infravermelho
5.
Science ; 340(6128): 45-8, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23413189

RESUMO

Supernova remnants are among the most spectacular examples of astrophysical pistons in our cosmic neighborhood. The gas expelled by the supernova explosion is launched with velocities ~1000 kilometers per second into the ambient, tenuous interstellar medium, producing shocks that excite hydrogen lines. We have used an optical integral-field spectrograph to obtain high-resolution spatial-spectral maps that allow us to study in detail the shocks in the northwestern rim of supernova 1006. The two-component Hα line is detected at 133 sky locations. Variations in the broad line widths and the broad-to-narrow line intensity ratios across tens of atomic mean free paths suggest the presence of suprathermal protons, the potential seed particles for generating high-energy cosmic rays.

6.
Science ; 325(5941): 683-4, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19661406
7.
Naturwissenschaften ; 93(2): 88-91, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16362427

RESUMO

Minerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed "metamict." They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space. Below roughly 100 K, reduced vacancy mobility allows cosmic ray and solar wind induced lattice defects to endure and accumulate for eons, reaching energy densities of up to MJ kg(-1) in some materials. We examine the possible effects of the release of energy stored in cold deep-space materials when solid-state defects recombine upon warming due to impacts, gravitational infall, or perihelion. Dimensional analysis suggests energetic defect recombination in radiation-damaged "xenomict" solids in comets, and planetesimals may, in some circumstances, raise internal temperatures enough to melt ice and volatilize frozen gases. We speculate that this may account for some cometary outbursts and Deep Impact experiment results. Calorimetric experiments on appropriately irradiated natural and synthetic materials are needed to further quantify these mechanisms.


Assuntos
Meio Ambiente Extraterreno , Temperatura Baixa , Radiação Cósmica , Meteoroides , Sistema Solar , Termodinâmica , Vento
8.
Science ; 305(5680): 49-50, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15232094
9.
Science ; 302(5652): 1949-52, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14671299

RESUMO

Comet C/2002 X5 (Kudo-Fujikawa) was observed near its perihelion of 0.19 astronomical unit by the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft. Images of the comet reconstructed from high-resolution spectra reveal a quasi-spherical cloud of neutral hydrogen and a variable tail of C+ and C2+ that disconnects from the comet and subsequently regenerates. The high abundance of C2+ and C+, at least 24% relative to water, cannot be explained by photodissociation of carbon monoxide and is instead attributed to the evaporation and subsequent photoionization of atomic carbon from organic refractory compounds present in the cometary dust grains. This result serves to strengthen the connection between comets and the material from which the Solar System formed.


Assuntos
Carbono , Meteoroides , Hidrogênio , Íons , Análise Espectral , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA