Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132324

RESUMO

Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.

2.
Biomolecules ; 12(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36291652

RESUMO

Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.


Assuntos
Probióticos , Simbióticos , Animais , Humanos , Antioxidantes , Prebióticos , Dieta
3.
Microorganisms ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144301

RESUMO

Probiotics and related preparations, including synbiotics and postbiotics, are living and non-living microbial-based multi-components, which are now among the most popular bioactive agents. Such interests mainly arise from the wide range and numerous beneficial effects of their use for various hosts. The current minireview article attempts to provide an overview and discuss in a holistic way the concepts, methodologies, action mechanisms, and applications of probiotic-based multi-components in human, animal, plant, soil, and environment health. Probiotic-based multi-component preparations refer to a mixture of bioactive agents, containing probiotics or postbiotics as main functional ingredients, and prebiotics, protectants, stabilizers, encapsulating agents, and other compounds as additional constituents. Analyzing, characterizing, and monitoring over time the traceability, performance, and stability of such multi-component ingredients require relevant and sensitive analytical tools and methodologies. Two innovative profiling and monitoring methods, the thermophysical fingerprinting thermogravimetry-differential scanning calorimetry technique (TGA-DSC) of the whole multi-component powder preparations, and the Advanced Testing for Genetic Composition (ATGC) strain analysis up to the subspecies level, are presented, illustrated, and discussed in this review to respond to those requirements. Finally, the paper deals with some selected applications of probiotic-based multi-components to human, animal, plant, soil and environment health, while mentioning their possible action mechanisms.

4.
ACS Omega ; 5(35): 22348-22355, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923792

RESUMO

Most probiotic-based products are available in powder particles under different solid-state forms. Such diversity can affect the probiotic stability, viability, and performance at different stages of processing, storage, and use. Here, we apply complementary physical chemistry techniques to characterize the bulk and surface properties of probiotic powder particles under different forms and report quantitative results of a highly concentrated multistrain reference product. The solid particle morphology, size/shape distribution, and the powder surface wettability in the compressed disc and porous packed bed forms are successively measured by sessile drop and capillary rise techniques. A complete wettability of the disc surface is observed through equilibrium contact angle measurements for various solvents, whereas the associated capillary rise data exhibit two regimes: a power law regime for the first few moments followed by a second regime, which can be described using Darcy's law. The use of this modeling approach shows the possibility of assessing the particle-packed bed permeability and porosity. These results open a new route of the structure-activity relationship study on the impact of probiotic solid particles on their functionalities and performance in promoting health benefits, related particularly to the human and animal gut permeability. This statement also strengthens the idea of using the compressed disc technique for easily performing probiotic wettability measurements.

5.
J Phys Chem B ; 116(13): 3998-4005, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22401559

RESUMO

Liquid crystals (LCs) may exist in different phases depending upon the orientational and positional orders of molecules in the material. Here, we demonstrate that the class of LC state induced by amphiphilic carbohydrate bicatenary derivatives is strictly hydroxyl group stereochemistry-dependent. This statement results from the experimental and theoretical investigations of surface film (2D) and bulk solid (3D) thermal behavior of synthetic stereoisomers n-tetradecyl (α-D-n-tetradecyl) galacto- and gluco-pyranosiduronate, with an axial (GalA-C(14/14)) or equatorial (GlcA-C(14/14)) hydroxyl group at the fourth carbon, respectively. Surface pressure-area isotherms (283-310 K), differential scanning calorimetry thermograms (223-573 K), and polarized optical textures (298-363 K) reveal that GlcA-C(14/14) organizes as a smectic LC-like phase (positional or lateral order), whereas the analogous stereoisomer GalA-C(14/14) behaves as a nematic LC-like phase (orientational order). Thermodynamic investigations and molecular dynamics models computed under similar temperature conditions provide consistent data with physical properties resulting from experimental approaches.


Assuntos
Carboidratos/química , Hidróxidos/química , Cristais Líquidos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA