Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mycopathologia ; 182(3-4): 305-313, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27815659

RESUMO

Neoscytalidium dimidiatum is an opportunistic fungus causing cutaneous infections mostly, which are difficult to treat due to antifungal resistance. In Malaysia, N. dimidiatum is associated with skin and nail infections, especially in the elderly. These infections may be mistaken for dermatophyte infections due to similar clinical appearance. In this study, Neoscytalidium isolates from cutaneous specimens, identified using morphological and molecular methods (28 Neoscytalidium dimidiatum and 1 Neoscytalidium sp.), were evaluated for susceptibility towards antifungal agents using the CLSI broth microdilution (M38-A2) and Etest methods. Amphotericin B, voriconazole, miconazole and clotrimazole showed high in vitro activity against all isolates with MIC ranging from 0.0313 to 1 µg/mL. Susceptibility towards fluconazole and itraconazole was noted in up to 10% of isolates, while ketoconazole was inactive against all isolates. Clinical breakpoints for antifungal drugs are not yet available for most filamentous fungi, including Neoscytalidium species. However, the results indicate that clinical isolates of N. dimidiatum in Malaysia were sensitive towards miconazole, clotrimazole, voriconazole and amphotericin B, in vitro.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Dermatomicoses/microbiologia , Ascomicetos/isolamento & purificação , Humanos , Malásia , Testes de Sensibilidade Microbiana
2.
Mycopathologia ; 181(5-6): 397-403, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26847667

RESUMO

Although non-sporulating molds (NSM) are frequently isolated from patients and have been recognized as agents of pulmonary disease, their clinical significance in cutaneous specimens is relatively unknown. Therefore, this study aimed to identify NSM and to determine the keratinolytic activity of isolates from cutaneous sites. NSM isolates from clinical specimens such as skin, nail, and body fluids were identified based on their ribosomal DNA sequences. Of 17 NSM isolates (7 Ascomycota, 10 Basidiomycota), eleven were identified to species level while five were identified to the genus level. These include Schizophyllum commune, a known human pathogen, Phoma multirostrata, a plant pathogen, and Perenniporia tephropora, a saprophyte. To determine fungal pathogenicity, keratinolytic activity, a major virulence factor, was evaluated ex vivo using human nail samples by measuring dye release from keratin azure, for NSM along with pathogens (Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Fusarium spp.) and nonpathogenic (endophyte) fungi for comparison. This study showed that pathogenic fungi had the highest keratinolytic activity (7.13 ± 0.552 keratinase units) while the nonpathogenic endophytes had the lowest activity (2.37 ± 0.262 keratinase units). Keratinolytic activity of two Ascomycota NSM (Guignardia mangiferae and Hypoxylon sp.) and one Basidiomycota NSM (Fomitopsis cf. meliae) was equivalent to that of pathogenic fungi, while Xylaria feejeensis showed significantly higher activity (p < 0.05) than nonpathogenic endophytes. These results indicate that the pathogenic ability of NSM is species dependent; clinical isolates, especially more frequently isolated species, may be involved in disease etiology.


Assuntos
Dermatomicoses/microbiologia , Fungos/isolamento & purificação , Fungos/patogenicidade , Peptídeo Hidrolases/análise , Fatores de Virulência/análise , Líquidos Corporais/microbiologia , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/enzimologia , Fungos/genética , Humanos , Unhas/microbiologia , Análise de Sequência de DNA , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA