Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798683

RESUMO

Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.5 [3.1, 6.0] mmHg or 27% reduction in intraocular pressure (IOP) for nine months after a single dose of only 1500 magnetically-steered hAMSCs, associated with restoration of function to the conventional outflow pathway, as judged by increased outflow facility and TM cellularity. iPSC-TM cells were also effective, but less so, showing only a 1.9 [0.4, 3.3] mmHg or 13% IOP reduction and increased risk of tumorigenicity. In both cases, injected cells remained detectable in the iridocorneal angle three weeks post-transplantation. Based on the locations of the delivered cells, the mechanism of IOP lowering is most likely paracrine signaling. We conclude that magnetically-steered hAMSC cell therapy has potential for long-term treatment of ocular hypertension in glaucoma. One Sentence Summary: A novel magnetic cell therapy provided effective intraocular pressure control in a mouse model of glaucoma, motivating future translational studies.

2.
J Biomech ; 168: 112113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648717

RESUMO

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.


Assuntos
Microscopia de Força Atômica , Animais , Microscopia de Força Atômica/métodos , Camundongos , Ratos , Esclera/fisiologia , Esclera/diagnóstico por imagem , Córnea/fisiologia , Córnea/diagnóstico por imagem , Malha Trabecular/fisiologia , Malha Trabecular/diagnóstico por imagem , Crioultramicrotomia/métodos , Disco Óptico/diagnóstico por imagem , Disco Óptico/fisiologia , Fenômenos Biomecânicos
3.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014311

RESUMO

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.

4.
Exp Eye Res ; 234: 109602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488007

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide and its most prevalent subtype is primary open angle glaucoma (POAG). One pathological change in POAG is loss of cells in the trabecular meshwork (TM), which is thought to contribute to ocular hypertension and has thus motivated development of cell-based therapies to refunctionalize the TM. TM cell therapy has shown promise in intraocular pressure (IOP) control, but existing cell delivery techniques suffer from poor delivery efficiency. We employed a novel magnetic delivery technique to reduce the unwanted side effects of off-target cell delivery. Mesenchymal stem cells (MSCs) were labeled with superparamagnetic iron oxide nanoparticles (SPIONs) and after intracameral injection were magnetically steered towards the TM using a focused magnetic apparatus ("point magnet"). This technique delivered the cells significantly closer to the TM at higher quantities and with more circumferential uniformity compared to either unlabeled cells or those delivered using a "ring magnet" technique. We conclude that our point magnet cell delivery technique can improve the efficiency of TM cell therapy and in doing so, potentially increase the therapeutic benefits and lower the risk of complications such as tumorigenicity and immunogenicity.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Animais , Camundongos , Malha Trabecular/patologia , Glaucoma de Ângulo Aberto/patologia , Glaucoma/patologia , Pressão Intraocular , Fenômenos Magnéticos
5.
Transl Vis Sci Technol ; 12(3): 8, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917118

RESUMO

Purpose: A reference atlas of optic nerve (ON) retinal ganglion cell (RGC) axons could facilitate studies of neuro-ophthalmic diseases by detecting subtle RGC axonal changes. Here we construct an RGC axonal atlas for normotensive eyes in Brown Norway rats, widely used in glaucoma research, and also develop/evaluate several novel metrics of axonal damage in hypertensive eyes. Methods: Light micrographs of entire ON cross-sections from hypertensive and normotensive eyes were processed through a deep learning-based algorithm, AxoNet2.0, to determine axonal morphological properties and were semiquantitatively scored using the Morrison grading scale (MGS) to provide a damage score independent of AxoNet2.0 outcomes. To construct atlases, ONs were conformally mapped onto an ON "template," and axonal morphometric data was computed for each region. We also developed damage metrics based on myelin morphometry. Results: In normotensive eyes, average axon density was ∼0.3 axons/µm2 (i.e., ∼80,000 axons in an ON). We measured axoplasm diameter, eccentricity, cross-sectional area, and myelin g-ratio and thickness. Most morphological parameters exhibited a wide range of coefficients of variation (CoV); however, myelin thickness CoV was only ∼2% in normotensive eyes. In hypertensive eyes, increased myelin thickness correlated strongly with MGS (P < 0.0001). Conclusions: We present the first comprehensive normative RGC axon morphometric atlas for Brown Norway rat eyes. We suggest objective, repeatable damage metrics based on RGC axon myelin thickness for hypertensive eyes. Translational Relevance: These tools can evaluate regional changes in RGCs and overall levels of damage in glaucoma studies using Brown Norway rats.


Assuntos
Glaucoma , Doenças do Nervo Óptico , Ratos , Animais , Células Ganglionares da Retina , Nervo Óptico , Axônios , Doenças do Nervo Óptico/diagnóstico , Ratos Endogâmicos BN
6.
Transl Vis Sci Technol ; 12(3): 9, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917117

RESUMO

Purpose: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normal-appearing RGC axons and (ii) quantifies their morphometry from light micrographs. Methods: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports. Results: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 ± 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P ≪ 0.001) with preferential loss of large axons (P < 0.001). Conclusions: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy. Translational Relevance: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.


Assuntos
Aprendizado Profundo , Glaucoma , Ratos , Camundongos , Animais , Células Ganglionares da Retina/fisiologia , Estudos Transversais , Modelos Animais de Doenças , Axônios/fisiologia , Glaucoma/diagnóstico
8.
Transl Vis Sci Technol ; 11(5): 7, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35536721

RESUMO

Purpose: Scleral stiffening may protect against glaucomatous retinal ganglion cell (RGC) loss or dysfunction associated with ocular hypertension. Here, we assess the potential neuroprotective effects of two treatments designed to stiffen either the entire posterior sclera or only the sclera adjacent to the peripapillary sclera in an experimental model of glaucoma. Methods: Rat sclerae were stiffened in vivo using either genipin (crosslinking the entire posterior sclera) or a regionally selective photosensitizer, methylene blue (stiffening only the juxtaperipapillary region surrounding the optic nerve). Ocular hypertension was induced using magnetic microbeads delivered to the anterior chamber. Morphological and functional outcomes, including optic nerve axon count and appearance, retinal thickness measured by optical coherence tomography, optomotor response, and electroretinography traces, were assessed. Results: Both local (juxtaperipapillary) and global (whole posterior) scleral stiffening treatments were successful at increasing scleral stiffness, but neither provided demonstrable neuroprotection in hypertensive eyes as assessed by RGC axon counts and appearance, optomotor response, or electroretinography. There was a weak indication that scleral crosslinking protected against retinal thinning as assessed by optical coherence tomography. Conclusions: Scleral stiffening was not demonstrated to be neuroprotective in ocular hypertensive rats. We hypothesize that the absence of benefit may in part be due to RGC loss associated with the scleral stiffening agents themselves (mild in the case of genipin, and moderate in the case of methylene blue), negating any potential benefit of scleral stiffening. Translational Relevance: The development of scleral stiffening as a neuroprotective treatment will require the identification of better tolerated stiffening protocols and further preclinical testing.


Assuntos
Glaucoma , Esclera , Animais , Pressão Intraocular , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Neuroproteção , Ratos
9.
Invest Ophthalmol Vis Sci ; 63(1): 21, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040876

RESUMO

Purpose: Rodent and primate models are commonly used in glaucoma research; however, both have their limitations. The tree shrew (Tupaia belangeri) is an emerging animal model for glaucoma research owing in part to having a human-like optic nerve head anatomy, specifically a collagenous load-bearing lamina. However, the anterior segment anatomy and function have not been extensively studied in the tree shrew. Thus, the purpose of this study was to provide the first detailed examination of the anterior segment anatomy and aqueous outflow facility in the tree shrew. Methods: Aqueous outflow dynamics were measured in five ostensibly normal eyes from three tree shrews using the iPerfusion system over a range of pressures. Gross histological assessment and immunohistochemistry were performed to characterize anterior segment anatomy and to localize several key molecules related to aqueous outflow. Results: Anterior segment anatomy in tree shrews is similar to humans, demonstrating a scleral spur, a multilayered trabecular meshwork and a circular Schlemm's canal with a single lumen. Average outflow facility was 0.193 µL/min/mm Hg (95% confidence interval, 0.153-0.244), and was stable over time. Outflow facility was more similar between contralateral eyes (approximately 5% average difference) than between eyes of different animals. No significant dependence of outflow facility on time or pressure was detected (pressure-flow nonlinearity parameter of 0.01 (95% % confidence interval, -0.29 to 0.31 CI µL/min/mm Hg). Conclusions: These studies lend support to the usefulness of the tree shrew as a novel animal model in anterior segment glaucoma and pharmacology research. The tree shrew's cost, load-bearing collagenous lamina cribrosa, and lack of washout or anterior chamber deepening provides a distinct experimental and anatomic advantage over the current rodent and nonhuman primate models used for translational research.


Assuntos
Segmento Anterior do Olho/anatomia & histologia , Humor Aquoso/fisiologia , Glaucoma/patologia , Pressão Intraocular/fisiologia , Animais , Segmento Anterior do Olho/fisiologia , Modelos Animais de Doenças , Feminino , Glaucoma/metabolismo , Masculino , Tupaia
11.
Acta Biomater ; 134: 379-387, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274532

RESUMO

Optic nerve head (ONH) biomechanics is centrally involved in the pathogenesis of glaucoma, a blinding ocular condition often characterized by elevation and fluctuation of the intraocular pressure and resulting loads on the ONH. Further, tissue viscoelasticity is expected to strongly influence the mechanical response of the ONH to mechanical loading, yet the viscoelastic mechanical properties of the ONH remain unknown. To determine these properties, we conducted micromechanical testing on porcine ONH tissue samples, coupled with finite element modeling based on a mixture model consisting of a biphasic material with a viscoelastic solid matrix. Our results provide a detailed description of the viscoelastic properties of the porcine ONH at each of its four anatomical quadrants (i.e., nasal, superior, temporal, and inferior). We showed that the ONH's viscoelastic mechanical response can be explained by a dual mechanism of fluid flow and solid matrix viscoelasticity, as is common in other soft tissues. We obtained porcine ONH properties as follows: matrix Young's modulus E=1.895[1.056,2.391] kPa (median [min., max.]), Poisson's ratio ν=0.142[0.060,0.312], kinetic time-constant τ=214[89,921] sec, and hydraulic permeability k=3.854×10-1[3.457×10-2,9.994×10-1] mm4/(N.sec). These values can be used to design and fabricate physiologically appropriate ex vivo test environments (e.g., 3D cell culture) to further understand glaucoma pathophysiology. STATEMENT OF SIGNIFICANCE: Optic nerve head (ONH) biomechanics is an important aspect of the pathogenesis of glaucoma, the leading cause of irreversible blindness. The ONH experiences time-varying loads, yet the viscoelastic behavior of this tissue has not been characterized. Here, we measure the time-dependent response of the ONH in porcine eyes and use mechanical modeling to provide time-dependent mechanical properties of the ONH. This information allows us to identify time-varying stimuli in vivo which have timescales matching the characteristic response times of the ONH, and can also be used to design and fabricate ex vivo 3D cultures to study glaucoma pathophysiology in a physiologically relevant environment, enabling the discovery of new generations of glaucoma medications focusing on neuroprotection.


Assuntos
Glaucoma , Disco Óptico , Animais , Fenômenos Biomecânicos , Análise de Elementos Finitos , Pressão Intraocular , Suínos
12.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783352

RESUMO

Glucocorticoids are widely used as an ophthalmic medication. A common, sight-threatening adverse event of glucocorticoid usage is ocular hypertension, caused by dysfunction of the conventional outflow pathway. We report that netarsudil, a rho-kinase inhibitor, decreased glucocorticoid-induced ocular hypertension in patients whose intraocular pressures were poorly controlled by standard medications. Mechanistic studies in our established mouse model of glucocorticoid-induced ocular hypertension show that netarsudil both prevented and reduced intraocular pressure elevation. Further, netarsudil attenuated characteristic steroid-induced pathologies as assessed by quantification of outflow function and tissue stiffness, and morphological and immunohistochemical indicators of tissue fibrosis. Thus, rho-kinase inhibitors act directly on conventional outflow cells to prevent or attenuate fibrotic disease processes in glucocorticoid-induced ocular hypertension in an immune-privileged environment. Moreover, these data motivate the need for a randomized prospective clinical study to determine whether netarsudil is indeed superior to first-line anti-glaucoma drugs in lowering steroid-induced ocular hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Benzoatos/farmacologia , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , beta-Alanina/análogos & derivados , Quinases Associadas a rho/antagonistas & inibidores , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Tonometria Ocular , beta-Alanina/farmacologia
13.
Invest Ophthalmol Vis Sci ; 62(3): 18, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704361

RESUMO

Purpose: Re-cellularization of the trabecular meshwork (TM) using stem cells is a potential novel treatment for ocular hypertension associated with glaucoma. To assess the therapeutic efficacy of this approach, improved in vivo and ex vivo models of TM pathophysiology are needed. Here, we investigate whether oxidative stress, induced by hydrogen peroxide (H2O2), can model glaucomatous ocular hypertension in the readily available porcine anterior segment organ culture model. Methods: The impact of H2O2 on TM cell viability and function was first evaluated in vitro using primary porcine TM cells. Oxidative stress was then induced by H2O2 infusion into perfused porcine anterior segments. Trabecular meshwork function was assessed by tracking matrix metalloproteinase (MMP) activity and the ability of the preparation to maintain intraocular pressure (IOP) homeostasis after a flow challenge (doubled fluid infusion rate). Finally, the TM was evaluated histologically. Results: H2O2 treatment resulted in a titratable reduction in cellularity across multiple primary TM cell donor strains. In organ culture preparations, H2O2-treated eyes showed impaired IOP homeostasis (i.e., IOPs stabilized at higher levels after a flow challenge vs. control eyes). This result was consistent with reduced MMP activity and TM cellularity; however, damage to the TM microstructure was not histologically evident in anterior segments receiving H2O2. Conclusions: Titrated H2O2 infusion resulted in TM cellular dysfunction without destruction of TM structure. Thus, this porcine organ culture model offers a useful platform for assessing trabecular meshwork therapies to treat ocular hypertension associated with glaucoma.


Assuntos
Modelos Animais de Doenças , Glaucoma de Ângulo Aberto/induzido quimicamente , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Animais , Sobrevivência Celular , Glaucoma de Ângulo Aberto/enzimologia , Glaucoma de Ângulo Aberto/patologia , Pressão Intraocular/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Técnicas de Cultura de Órgãos , Fagocitose/fisiologia , Suínos , Malha Trabecular/enzimologia , Malha Trabecular/patologia
14.
iScience ; 24(2): 102042, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33532718

RESUMO

Controlling intraocular pressure (IOP) remains the mainstay of glaucoma therapy. The trabecular meshwork (TM), the key tissue responsible for aqueous humor (AH) outflow and IOP maintenance, is very sensitive to mechanical forces. However, it is not understood whether Piezo channels, very sensitive mechanosensors, functionally influence AH outflow. Here, we characterize the role of Piezo1 in conventional AH outflow. Immunostaining and western blot analysis showed that Piezo1 is widely expressed by TM. Patch-clamp recordings in TM cells confirmed the activation of Piezo1-derived mechanosensitive currents. Importantly, the antagonist GsMTx4 for mechanosensitive channels significantly decreased steady-state facility, yet activation of Piezo1 by the specific agonist Yoda1 did not lead to a facility change. Furthermore, GsMTx4, but not Yoda1, caused a significant increase in ocular compliance, a measure of the eye's transient response to IOP perturbation. Our findings demonstrate a potential role for Piezo1 in conventional outflow, likely under pathological and rapid transient conditions.

15.
Exp Eye Res ; 202: 108354, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171192

RESUMO

Most animal models of glaucoma rely on induction of ocular hypertension (OHT), yet such models can suffer from high IOPs leading to undesirable retinal ischemia. Thus, animals with IOPs exceeding a threshold (e.g. > 60 mmHg) are often excluded from studies. However, due to the intermittent nature of IOP measurements, this approach may fail to detect ischemia. Conversely, it may also inappropriately eliminate animals with IOP spikes that do not induce ischemic damage. It is known that acute ischemia selectively impairs inner retinal function, which results in a reduced b-wave amplitude. Here, we explore the potential of using electroretinography (ERG) to detect ischemic damage in OHT eyes. 74 Brown Norway rats received a unilateral injection of magnetic microbeads to induce OHT, while contralateral eyes served as controls. IOP was measured every 2-3 days for 14 days after microbead injection. Retinal function was evaluated using dark-adapted bright flash ERG (2.1 log cd•s/m2) prior to, and at 7 and 14 days after, injection. We investigated two criteria for excluding animals: (IOP Criterion) a single IOP measurement > 60 mmHg; or (ERG Criterion) a b-wave amplitude below the 99.5% confidence interval for naïve eyes. 49 of 74 rats passed both criteria, 7 of 74 failed both, and 18 passed one criterion but not the other. We suggest that ERG testing can detect unwelcome ischemic damage in animal models of OHT. Since brief IOP spikes do not necessarily lead to ischemic retinal damage, and because extended periods of elevated IOP can be missed, such ERG-based criteria may provide more objective and robust exclusion criteria in future glaucoma studies.


Assuntos
Adaptação à Escuridão/fisiologia , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Isquemia/fisiopatologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glaucoma/complicações , Glaucoma/diagnóstico , Isquemia/diagnóstico , Isquemia/etiologia , Masculino , Ratos , Ratos Endogâmicos BN
16.
Transl Vis Sci Technol ; 9(10): 8, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32974080

RESUMO

Purpose: Genipin has been proposed as a possible neuroprotective therapy in myopia and glaucoma. Here, we aim to determine the effects of prolonged genipin-induced scleral stiffening on visual function. Methods: Eyes from Brown Norway rats were treated in vivo with either a single 15 mM genipin retrobulbar injection or sham retrobulbar injection and were compared to naïve eyes. Intraocular pressure, optomotor response, and electroretinograms were repeatedly measured over 4 weeks following retrobulbar injections to determine visual and retinal function. At 4 weeks, we quantified retinal ganglion cell axon counts. Finally, molecular changes in gene and protein expression were analyzed via real-time polymerase chain reaction (RT-PCR) and proteomics. Results: Retrobulbar injection of genipin did not affect intraocular pressure (IOP) or retinal function, nor have a sustained impact on visual function. Although genipin-treated eyes had a small decrease in retinal ganglion cell axon counts compared to contralateral sham-treated eyes (-8,558 ± 18,646; mean ± SD), this was not statistically significant (P = 0.206, n = 9). Last, we did not observe any changes in gene or protein expression due to genipin treatment. Conclusions: Posterior scleral stiffening with a single retrobulbar injection of 15 mM genipin causes no sustained deficits in visual or retinal function or at the molecular level in the retina and sclera. Retinal ganglion cell axon morphology appeared normal. Translational Significance: These results support future in vivo studies to determine the efficacy of genipin-induced posterior scleral stiffening to help treat ocular diseases, like myopia and glaucoma.


Assuntos
Glaucoma , Esclera , Animais , Iridoides/farmacologia , Ratos , Retina
17.
Sci Rep ; 10(1): 8034, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415269

RESUMO

In this work, we develop a robust, extensible tool to automatically and accurately count retinal ganglion cell axons in optic nerve (ON) tissue images from various animal models of glaucoma. We adapted deep learning to regress pixelwise axon count density estimates, which were then integrated over the image area to determine axon counts. The tool, termed AxoNet, was trained and evaluated using a dataset containing images of ON regions randomly selected from whole cross sections of both control and damaged rat ONs and manually annotated for axon count and location. This rat-trained network was then applied to a separate dataset of non-human primate (NHP) ON images. AxoNet was compared to two existing automated axon counting tools, AxonMaster and AxonJ, using both datasets. AxoNet outperformed the existing tools on both the rat and NHP ON datasets as judged by mean absolute error, R2 values when regressing automated vs. manual counts, and Bland-Altman analysis. AxoNet does not rely on hand-crafted image features for axon recognition and is robust to variations in the extent of ON tissue damage, image quality, and species of mammal. Therefore, AxoNet is not species-specific and can be extended to quantify additional ON characteristics in glaucoma and potentially other neurodegenerative diseases.


Assuntos
Axônios/fisiologia , Biologia Computacional/métodos , Aprendizado Profundo , Modelos Biológicos , Nervo Óptico/fisiologia , Células Ganglionares da Retina/fisiologia , Software , Algoritmos , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Nervo Óptico/patologia , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Ratos , Reprodutibilidade dos Testes
18.
J Biomech ; 93: 204-208, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31311622

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP), the primary risk factor for glaucoma, is thought to induce abnormally high strains in optic nerve head (ONH) tissues, which ultimately result in retinal ganglion cell damage and vision loss. The mechanisms by which excessive deformations result in vision loss remain incompletely understood. The ability of computational and in vitro models of the ONH to provide insight into these mechanisms, in many cases, depends on our ability to replicate the physiological environment, which in turn requires knowledge of tissue biomechanical properties. The majority of mechanical data published to date regarding the ONH has been obtained from tensile testing, yet compression has been shown to be the main mode of deformation in the ONH under elevated IOP. We have thus tested pig and rat ONH tissue using unconfined cyclic compression. The material constants C1, obtained from fitting the stress vs. strain data with a neo-Hookean material model, were 428 [367, 488] Pa and 64 [53, 76] Pa (mean [95% Confidence Interval]) for pig and rat optic nerve head, respectively. Additionally, we investigated the effects of strain rate and tissue storage on C1 values. These data will inform future efforts to understand and replicate the in vivo biomechanical environment of the ONH.


Assuntos
Disco Óptico/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular/fisiologia , Masculino , Disco Óptico/patologia , Doenças do Nervo Óptico/fisiopatologia , Ratos , Células Ganglionares da Retina/patologia , Suínos
19.
Exp Eye Res ; 185: 107689, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175860

RESUMO

Spontaneous retinal venous pulsations (SRVPs), pulsations of branches of the central retinal vein, are affected by intraocular pressure (IOP) and intracranial pressure (ICP) and thus convey potentially-useful information about ICP. However, the exact relationship between SRVPs, IOP, and ICP is unknown. It is not easily feasible to study this relationship in humans, necessitating the use of an animal model. We here propose tree shrews as a suitable animal model to study the complex relationship between SRVPs, IOP, and ICP. Tree shrew SRVP incidence was determined in a population of animals. Following validation of a modified IOP control system to accurately and quickly control IOP, IOP and/or ICP were manipulated in two tree shrews with SRVPs and the effects on SRVP properties were quantified. SRVPs were present in 75% of tree shrews at physiologic IOP and ICP. Altering IOP or ICP produced changes in tree shrew SRVP properties; specifically, increasing IOP caused SRVP amplitude to increase, while increasing ICP caused SRVP amplitude to decrease. In addition, a higher IOP was necessary to generate SRVPs at a higher ICP than at a lower ICP. SRVPs occur with a similar incidence in tree shrews as in humans, and tree shrew SRVPs are affected by changes in IOP and ICP in a manner qualitatively similar to that reported in humans. In view of anatomic similarities, tree shrews are a promising animal model system to further study the complex relationship between SRVPs, IOP, and ICP.


Assuntos
Modelos Animais de Doenças , Hipertensão Intracraniana/fisiopatologia , Hipertensão Ocular/fisiopatologia , Fluxo Pulsátil/fisiologia , Veia Retiniana/fisiologia , Animais , Feminino , Humanos , Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Masculino , Tomografia de Coerência Óptica , Tupaia , Gravação em Vídeo
20.
Sci Rep ; 8(1): 5848, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643342

RESUMO

It has been suggested that common mechanisms may underlie the pathogenesis of primary open-angle glaucoma (POAG) and steroid-induced glaucoma (SIG). The biomechanical properties (stiffness) of the trabecular meshwork (TM) have been shown to differ between POAG patients and unaffected individuals. While features such as ocular hypertension and increased outflow resistance in POAG and SIG have been replicated in mouse models, whether changes of TM stiffness contributes to altered IOP homeostasis remains unknown. We found that outer TM was stiffer than the inner TM and, there was a significant positive correlation between outflow resistance and TM stiffness in mice where conditions are well controlled. This suggests that TM stiffness is intimately involved in establishing outflow resistance, motivating further studies to investigate factors underlying TM biomechanical property regulation. Such factors may play a role in the pathophysiology of ocular hypertension. Additionally, this finding may imply that manipulating TM may be a promising approach to restore normal outflow dynamics in glaucoma. Further, novel technologies are being developed to measure ocular tissue stiffness in situ. Thus, the changes of TM stiffness might be a surrogate marker to help in diagnosing altered conventional outflow pathway function if those technologies could be adapted to TM.


Assuntos
Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Animais , Dexametasona/administração & dosagem , Dexametasona/toxicidade , Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Glaucoma/diagnóstico , Humanos , Pressão Intraocular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Malha Trabecular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA