Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 8(5): 434-6, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446837

RESUMO

We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins.


Assuntos
Dissacarídeos/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Polissacarídeos/biossíntese , Engenharia de Proteínas , Campylobacter jejuni/enzimologia , Glicosilação , Hexosiltransferases/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Appl Environ Microbiol ; 77(3): 871-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131519

RESUMO

The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates.


Assuntos
Escherichia coli/metabolismo , Glicoproteínas/biossíntese , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Meios de Cultura , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Periplasma/metabolismo , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA