RESUMO
The promotion of recovery in patients who have entered a disorder of consciousness (DOC; e.g., coma or vegetative states) following severe brain injury remains an enduring medical challenge despite an ever-growing scientific understanding of these conditions. Indeed, recent work has consistently implicated altered cortical modulation by deep brain structures (e.g., the thalamus and the basal ganglia) following brain damage in the arising of, and recovery from, DOCs. The (re)emergence of low-intensity focused ultrasound (LIFU) neuromodulation may provide a means to selectively modulate the activity of deep brain structures noninvasively for the study and treatment of DOCs. This technique is unique in its combination of relatively high spatial precision and noninvasive implementation. Given the consistent implication of the thalamus in DOCs and prior results inducing behavioral recovery through invasive thalamic stimulation, here we applied ultrasound to the central thalamus in 11 acute DOC patients, measured behavioral responsiveness before and after sonication, and applied functional MRI during sonication. With respect to behavioral responsiveness, we observed significant recovery in the week following thalamic LIFU compared with baseline. With respect to functional imaging, we found decreased BOLD signals in the frontal cortex and basal ganglia during LIFU compared with baseline. In addition, we also found a relationship between altered connectivity of the sonicated thalamus and the degree of recovery observed post-LIFU.
RESUMO
Electroencephalography (EEG), easily deployed at the bedside, is an attractive modality for deriving quantitative biomarkers of prognosis and differential diagnosis in severe brain injury and disorders of consciousness (DOC). Prior work by Schiff has identified four dynamic regimes of progressive recovery of consciousness defined by the presence or absence of thalamically-driven EEG oscillations. These four predefined categories (ABCD model) relate, on a theoretical level, to thalamocortical integrity and, on an empirical level, to behavioral outcome in patients with cardiac arrest coma etiologies. However, whether this theory-based stratification of patients might be useful as a diagnostic biomarker in DOC and measurably linked to thalamocortical dysfunction remains unknown. In this work, we relate the reemergence of thalamically-driven EEG oscillations to behavioral recovery from traumatic brain injury (TBI) in a cohort of N = 38 acute patients with moderate-to-severe TBI and an average of 1 week of EEG recorded per patient. We analyzed an average of 3.4 hr of EEG per patient, sampled to coincide with 30-min periods of maximal behavioral arousal. Our work tests and supports the ABCD model, showing that it outperforms a data-driven clustering approach and may perform equally well compared to a more parsimonious categorization. Additionally, in a subset of patients (N = 11), we correlated EEG findings with functional magnetic resonance imaging (fMRI) connectivity between nodes in the mesocircuit-which has been theoretically implicated by Schiff in DOC-and report a trend-level relationship that warrants further investigation in larger studies.
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estado de Consciência , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/etiologia , Eletroencefalografia/métodos , HumanosRESUMO
While electroencephalogram (EEG) burst-suppression is often induced therapeutically using sedatives in the intensive care unit (ICU), there is hitherto no evidence with respect to its association to outcome in moderate-to-severe neurological patients. We examined the relationship between sedation-induced burst-suppression (SIBS) and outcome at hospital discharge and at 6-month follow up in patients surviving moderate-to-severe traumatic brain injury (TBI). For each of 32 patients recovering from coma after moderate-to-severe TBI, we measured the EEG burst suppression ratio (BSR) during periods of low responsiveness as assessed with the Glasgow Coma Scale (GCS). The maximum BSR was then used to predict the Glasgow Outcome Scale extended (GOSe) at discharge and at 6 months post-injury. A multi-model inference approach was used to assess the combination of predictors that best fit the outcome data. We found that BSR was positively associated with outcomes at 6 months (P = 0.022) but did not predict outcomes at discharge. A mediation analysis found no evidence that BSR mediates the effects of barbiturates or propofol on outcomes. Our results provide initial observational evidence that burst suppression may be neuroprotective in acute patients with TBI etiologies. SIBS may thus be useful in the ICU as a prognostic biomarker.
RESUMO
OBJECTIVE: To understand how, biologically, the acute event of traumatic brain injury gives rise to a long-term disease, we address the relationship between evolving cortical and subcortical brain damage and measures of functional outcome and cognitive functioning at 6 months after injury. METHODS: For this longitudinal analysis, clinical and MRI data were collected in a tertiary neurointensive care setting in a continuous sample of 157 patients surviving moderate to severe traumatic brain injury between 2000 and 2018. For each patient, we collected T1- and T2-weighted MRI data acutely and at the 6-month follow-up, as well as acute measures of injury severity (Glasgow Coma Scale), follow-up measures of functional impairment (Glasgow Outcome Scale-extended), and, in a subset of patients, neuropsychological measures of attention, executive functions, and episodic memory. RESULTS: In the final cohort of 113 subcortical and 92 cortical datasets that survived (blind) quality control, extensive atrophy was observed over the first 6 months after injury across the brain. However, only atrophy within subcortical regions, particularly in the left thalamus, was associated with functional outcome and neuropsychological measures of attention, executive functions, and episodic memory. Furthermore, when brought together in an analytical model, longitudinal brain measurements could distinguish good from bad outcome with 90% accuracy, whereas acute brain and clinical measurements alone could achieve only 20% accuracy. CONCLUSION: Despite great injury heterogeneity, secondary thalamic pathology is a measurable minimum common denominator mechanism directly relating biology to clinical measures of outcome and cognitive functioning, potentially linking the acute event and the longer-term disease of traumatic brain injury.
Assuntos
Lesões Encefálicas Traumáticas/complicações , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Adulto , Idoso , Atenção , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/psicologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Estudos de Coortes , Função Executiva , Feminino , Seguimentos , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Pessoa de Meia-Idade , Testes Neuropsicológicos , Teste de Stroop , Adulto JovemRESUMO
BACKGROUND: Traumatic brain injury (TBI) causes early seizures and is the leading cause of post-traumatic epilepsy. We prospectively assessed structural imaging biomarkers differentiating patients who develop seizures secondary to TBI from patients who do not. DESIGN: Multicentre prospective cohort study starting in 2018. Imaging data are acquired around day 14 post-injury, detection of seizure events occurred early (within 1 week) and late (up to 90 days post-TBI). RESULTS: From a sample of 96 patients surviving moderate-to-severe TBI, we performed shape analysis of local volume deficits in subcortical areas (analysable sample: 57 patients; 35 no seizure, 14 early, 8 late) and cortical ribbon thinning (analysable sample: 46 patients; 29 no seizure, 10 early, 7 late). Right hippocampal volume deficit and inferior temporal cortex thinning demonstrated a significant effect across groups. Additionally, the degree of left frontal and temporal pole thinning, and clinical score at the time of the MRI, could differentiate patients experiencing early seizures from patients not experiencing them with 89% accuracy. CONCLUSIONS AND RELEVANCE: Although this is an initial report, these data show that specific areas of localised volume deficit, as visible on routine imaging data, are associated with the emergence of seizures after TBI.
Assuntos
Contusão Encefálica/diagnóstico por imagem , Hemorragia Encefálica Traumática/diagnóstico por imagem , Afinamento Cortical Cerebral/diagnóstico por imagem , Epilepsia Pós-Traumática/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto , Contusão Encefálica/complicações , Hemorragia Encefálica Traumática/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Regras de Decisão Clínica , Biologia Computacional , Eletroencefalografia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Feminino , Lobo Frontal/patologia , Escala de Coma de Glasgow , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Prospectivos , Lobo Temporal/patologia , Fatores de Tempo , Adulto JovemRESUMO
Cerebral acidosis is a consequence of secondary injury mechanisms following traumatic brain injury (TBI), including excitotoxicity and ischemia, with potentially significant clinical implications. However, there remains an unmet clinical need for technology for non-invasive, high resolution pH imaging of human TBI for studying metabolic changes following injury. The current study examined 17 patients with TBI and 20 healthy controls using amine chemical exchange saturation transfer echoplanar imaging (CEST EPI), a novel pH-weighted molecular MR imaging technique, on a clinical 3T MR scanner. Results showed significantly elevated pH-weighted image contrast (MTRasym at 3â¯ppm) in areas of T2 hyperintensity or edema (Pâ¯<â¯0.0001), and a strong negative correlation with Glasgow Coma Scale (GCS) at the time of the MRI exam (R2â¯=â¯0.4777, Pâ¯=â¯0.0021), Glasgow Outcome Scale - Extended (GOSE) at 6â¯months from injury (R2â¯=â¯0.5334, Pâ¯=â¯0.0107), and a non-linear correlation with the time from injury to MRI exam (R2â¯=â¯0.6317, Pâ¯=â¯0.0004). This evidence suggests clinical feasibility and potential value of pH-weighted amine CEST EPI as a high-resolution imaging tool for identifying tissue most at risk for long-term damage due to cerebral acidosis.
Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons , Adulto JovemRESUMO
The Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy (EpiBioS4Rx) is a longitudinal prospective observational study funded by the National Institute of Health (NIH) to discover and validate observational biomarkers of epileptogenesis after traumatic brain injury (TBI). A multidisciplinary approach has been incorporated to investigate acute electrical, neuroanatomical, and blood biomarkers after TBI that may predict the development of post-traumatic epilepsy (PTE). We plan to enroll 300 moderate-severe TBI patients with a frontal and/or temporal lobe hemorrhagic contusion. Acute evaluation with blood, imaging and electroencephalographic monitoring will be performed and then patients will be tracked for 2â¯years to determine the incidence of PTE. Validation of selected biomarkers that are discovered in planned animal models will be a principal feature of this work. Specific hypotheses regarding the discovery of biomarkers have been set forth in this study. An international cohort of 13 centers spanning 2 continents will be developed to facilitate this study, and for future interventional studies.
Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Biomarcadores/sangue , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Biologia Computacional , Epilepsia Pós-Traumática/sangue , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/fisiopatologia , Humanos , Estudos Longitudinais , Estudos Observacionais como Assunto , Estudos ProspectivosRESUMO
Treatment of severe traumatic brain injury (TBI) in the intensive care unit focuses on controlling intracranial pressure, ensuring sufficient cerebral perfusion, and monitoring for secondary injuries. However, there are limited prognostic tools and no biomarkers or tests of the evolving neuropathology. Metabolomics has the potential to be a powerful tool to indirectly monitor evolving dysfunctional metabolism. We compared metabolite levels in simultaneously collected arterial and jugular venous samples in acute TBI patients undergoing intensive care as well as in healthy control volunteers. Our results show that, first, many circulating metabolites are decreased in TBI patients compared with healthy controls days after injury; both proline and hydroxyproline were depleted by ≥60% compared with healthy controls, as was gluconate. Second, both arterial and jugular venous plasma metabolomic analysis separates TBI patients from healthy controls and shows that distinct combinations of metabolites are driving the group separation in the two blood types. Third, TBI patients under heavy sedation with pentobarbital at the time of blood collection were discernibly different from patients not receiving pentobarbital. These results highlight the importance of accounting for medications in metabolomics analysis. Jugular venous plasma metabolomics shows potential as a minimally invasive tool to identify and study dysfunctional cerebral metabolism after TBI.
Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/metabolismo , Hipnóticos e Sedativos/uso terapêutico , Metabolômica/métodos , Pentobarbital/uso terapêutico , Adolescente , Adulto , Idoso , Lesões Encefálicas Traumáticas/tratamento farmacológico , Estudos de Coortes , Feminino , Humanos , Veias Jugulares , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
OBJECTIVE: Injury severity after traumatic brain injury (TBI) is a well-established risk factor for the development of post-traumatic epilepsy (PTE). However, whether lesion location influences the susceptibility of seizures and development of PTE longitudinally has yet to be defined. We hypothesized that lesion location, specifically in the temporal lobe, would be associated with an increased incidence of both early seizures and PTE. As secondary analysis measures, we assessed the degree of brain atrophy and functional recovery, and performed a between-group analysis, comparing patients who developed PTE with those who did not develop PTE. METHODS: We assessed early seizure incidence (nâ¯=â¯90) and longitudinal development of PTE (nâ¯=â¯46) in a prospective convenience sample of patients with moderate-severe TBI. Acutely, patients were monitored with prospective cEEG and a high-resolution Magnetic Resonance Imaging (MRI) scan for lesion location classification. Chronically, patients underwent a high-resolution MRI, clinical assessment, and were longitudinally monitored for development of epilepsy for a minimum of 2â¯years post-injury. RESULTS: Early seizures, occurring within the first week post-injury, occurred in 26.7% of the patients (nâ¯=â¯90). Within the cohort of subjects who had evidence of early seizures (nâ¯=â¯24), 75% had a hemorrhagic temporal lobe injury on admission. For longitudinal analyses (nâ¯=â¯46), 45.7% of patients developed PTE within a minimum of 2â¯years post-injury. Within the cohort of subjects who developed PTE (nâ¯=â¯21), 85.7% had a hemorrhagic temporal lobe injury on admission and 38.1% had early (convulsive or non-convulsive) seizures on cEEG monitoring during their acute ICU stay. In a between-group analysis, patients with PTE (nâ¯=â¯21) were more likely than patients who did not develop PTE (nâ¯=â¯25) to have a hemorrhagic temporal lobe injury (pâ¯<â¯0.001), worse functional recovery (pâ¯=â¯0.003), and greater temporal lobe atrophy (pâ¯=â¯0.029). CONCLUSION: Our results indicate that in a cohort of patients with a moderate-severe TBI, 1) lesion location specificity (e.g. the temporal lobe) is related to both a high incidence of early seizures and longitudinal development of PTE, 2) early seizures, whether convulsive or non-convulsive in nature, are associated with an increased risk for PTE development, and 3) patients who develop PTE have greater chronic temporal lobe atrophy and worse functional outcomes, compared to those who do not develop PTE, despite matched injury severity characteristics. This study provides the foundation for a future prospective study focused on elucidating the mechanisms and risk factors for epileptogenesis.
Assuntos
Lesões Encefálicas Traumáticas/epidemiologia , Epilepsia Pós-Traumática/epidemiologia , Lobo Temporal/lesões , Adulto , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/etiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Índice de Gravidade de DoençaRESUMO
Carbohydrate fuel augmentation following traumatic brain injury may be a viable treatment to improve recovery when cerebral oxidative metabolism of glucose is depressed. We performed a primed constant sodium L-lactate infusion in 11 moderate to severely brain injured adults. Blood was collected before and periodically during the infusion study. We quantified global cerebral uptake of glucose and lactate and other systemic metabolites associated with energy metabolism. Our hypothesis was that cerebral lactate uptake, as measured by the arteriovenous difference of lactate (AVDlac), would increase in severely injured TBI patients in the neurocritical care unit. Infusion of sodium L-lactate changed net cerebral lactate release, where the arteriovenous difference of lactate is negative, to net cerebral lactate uptake. Results from a mixed effects model of AVDlac with the fixed effects of infusion time, arterial lactate concentration, arterial glucose concentration and arteriovenous difference of glucose shows that doubling arterial lactate concentration (from .92 to 1.84 mM) results in an increase in AVDlac from -.078 mM to .090 mM. We did not detect changes in systemic glucose during the course of the infusion study and observed significant changes in alanine (30% [20 39]), glutamine (34% [24 43]), acetate (87% [60 113]), valine (40% [28 51]), and leucine (24% [16 32]) from baseline levels. Further studies are required to establish the impact of lactate supplementation on cerebral and systemic flux of lactate, on gluconeogenesis, and on the impact on cerebral energetics following injury. © 2017 Wiley Periodicals, Inc.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ácido Láctico/metabolismo , Lactato de Sódio/uso terapêutico , Adulto , Idoso , Glicemia/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Infusões Intravenosas , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Lactato de Sódio/administração & dosagemRESUMO
BACKGROUND: The objective was to investigate the impact of targeting tight glycemic control (4.4-6.1 mM) on endogenous ketogenesis in severely head-injured adults. METHODS: The data were prospectively collected during a randomized, within-patient crossover study comparing tight to loose glycemic control, defined as 6.7-8.3 mM. Blood was collected periodically during both tight and loose glycemic control epochs. Post hoc analysis of insulin dose and total nutritional provision was performed. RESULTS: Fifteen patients completed the crossover study. Total ketones were increased 81 µM ([38 135], p < 0.001) when blood glucose was targeted to tight (4.4-6.1 mM) compared with loose glycemic control (6.7-8.3 mM), corresponding to a 60 % increase. There was a significant decrease in total nutritional provisions (p = 0.006) and a significant increase in insulin dose (p = 0.008). CONCLUSIONS: Permissive underfeeding was tolerated when targeting tight glycemic control, but total nutritional support is an important factor when treating hyperglycemia.
Assuntos
Glicemia/análise , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/terapia , Hiperglicemia/sangue , Hiperglicemia/terapia , Corpos Cetônicos/sangue , Avaliação de Resultados em Cuidados de Saúde , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
OBJECTIVE: To demonstrate a set of approaches using diffusion tensor imaging (DTI) tractography whereby pathology-affected white matter (WM) fibres in patients with intracerebral haemorrhage (ICH) can be selectively visualized. METHODS: Using structural neuroimaging and DTI volumes acquired longitudinally from three representative patients with ICH, the spatial configuration of ICH-related trauma is delineated and the WM fibre bundles intersecting each ICH lesion are identified and visualized. Both the extent of ICH lesions as well as the proportion of WM fibres intersecting the ICH pathology are quantified and compared across subjects. RESULTS: This method successfully demonstrates longitudinal volumetric differences in ICH lesion load and differences across time in the percentage of fibres which intersect the primary injury. CONCLUSIONS: Because neurological conditions such as intracerebral haemorrhage (ICH) frequently exhibit pathology-related effects which lead to the exertion of mechanical pressure upon surrounding tissues and, thereby, to the deformation and/or displacement of WM fibres, DTI fibre tractography is highly suitable for assessing longitudinal changes in WM fibre integrity and mechanical displacement.