Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 28(2): 139-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34667107

RESUMO

Widespread cotranscriptional splicing has been demonstrated from yeast to human. However, most studies to date addressing the kinetics of splicing relative to transcription used either Saccharomyces cerevisiae or metazoan cultured cell lines. Here, we adapted native elongating transcript sequencing technology (NET-seq) to measure cotranscriptional splicing dynamics during the early developmental stages of Drosophila melanogaster embryos. Our results reveal the position of RNA polymerase II (Pol II) when both canonical and recursive splicing occur. We found heterogeneity in splicing dynamics, with some RNAs spliced immediately after intron transcription, whereas for other transcripts no splicing was observed over the first 100 nt of the downstream exon. Introns that show splicing completion before Pol II has reached the end of the downstream exon are necessarily intron-defined. We studied the splicing dynamics of both nascent pre-mRNAs transcribed in the early embryo, which have few and short introns, as well as pre-mRNAs transcribed later in embryonic development, which contain multiple long introns. As expected, we found a relationship between the proportion of spliced reads and intron size. However, intron definition was observed at all intron sizes. We further observed that genes transcribed in the early embryo tend to be isolated in the genome whereas genes transcribed later are often overlapped by a neighboring convergent gene. In isolated genes, transcription termination occurred soon after the polyadenylation site, while in overlapped genes, Pol II persisted associated with the DNA template after cleavage and polyadenylation of the nascent transcript. Taken together, our data unravel novel dynamic features of Pol II transcription and splicing in the developing Drosophila embryo.


Assuntos
Splicing de RNA , Terminação da Transcrição Genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Íntrons , Poliadenilação , RNA Polimerase II/metabolismo
2.
Methods ; 178: 89-95, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493517

RESUMO

Mammalian Native Elongating Transcript sequencing (mNET-seq) is a recently developed technique that generates genome-wide profiles of nascent transcripts associated with RNA polymerase II (Pol II) elongation complexes. The ternary transcription complexes formed by Pol II, DNA template and nascent RNA are first isolated, without crosslinking, by immunoprecipitation with antibodies that specifically recognize the different phosphorylation states of the polymerase large subunit C-terminal domain (CTD). The coordinate of the 3' end of the RNA in the complexes is then identified by high-throughput sequencing. The main advantage of mNET-seq is that it provides global, bidirectional maps of Pol II CTD phosphorylation-specific nascent transcripts and coupled RNA processing at single nucleotide resolution. Here we describe the general pipeline to prepare and analyse high-throughput data from mNET-seq experiments.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Transcrição Gênica , Animais , Fosforilação/genética , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética
3.
BMC Cancer ; 19(1): 771, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382922

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) represent a substantial portion of the human transcriptome. LncRNAs present a very stringent cell-type/tissue specificity being potential candidates for therapeutical applications during aging and disease. As example, targeting of MALAT1, a highly conserved lncRNA originally identified in metastatic non-small cell lung cancer, has shown promising results in cancer regression. Nevertheless, the regulation and specificity of MALAT1 have not been directly addressed. Interestingly, MALAT1 locus is spanned by an antisense transcript named TALAM1. METHODS: Here using a collection of breast cancer cells and in vitro and in vivo migration assays we characterized the dynamics of expression and demonstrated that TALAM1 regulates and synergizes with MALAT1 during tumorigenesis. RESULTS: Down-regulation of TALAM1 was shown to greatly impact on the capacity of breast cancer cells to migrate in vitro or to populate the lungs of immunocompromised mice. Additionally, we demonstrated that TALAM1 cooperates with MALAT1 in the regulation of the properties guiding breast cancer aggressiveness and malignancy. CONCLUSIONS: By characterizing this sense/anti-sense pair we uncovered the complexity of MALAT1 locus regulation, describing new potential candidates for cancer targeting.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Antissenso/genética , RNA Longo não Codificante/genética , Transcrição Gênica/genética , Animais , Carcinogênese/genética , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Pulmão/patologia , Células MCF-7 , Camundongos , Camundongos SCID , Metástase Neoplásica , Transfecção , Transplante Heterólogo , Regulação para Cima/genética
4.
Aging Cell ; 18(1): e12870, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456884

RESUMO

One of the most outstanding observations from next-generation sequencing approaches was that only 1.5% of our genes code for proteins. The biggest part is transcribed but give rise to different families of RNAs without coding potential. The functional relevance of these abundant transcripts remains far from elucidated. Among them are the long non-coding RNAs (lncRNAs), a relatively large and heterogeneous group of RNAs shown to be highly tissue-specific, indicating a prominent role in processes controlling cellular identity. In particular, lncRNAs have been linked to both stemness properties and detrimental pathways regulating the aging process, being novel players in the intricate network guiding tissue homeostasis. Here, we summarize the up-to-date information on the role of lncRNAs that affect stemness and hence impact upon aging, highlighting the likelihood that lncRNAs may represent an unexploited reservoir of potential therapeutic targets for reprogramming applications and aging-related diseases.


Assuntos
Senescência Celular/genética , RNA Longo não Codificante/genética , Células-Tronco/metabolismo , Reprogramação Celular/genética , Epigênese Genética , Humanos , RNA Longo não Codificante/metabolismo
5.
Mol Cell ; 72(2): 369-379.e4, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340024

RESUMO

The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5' splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3' splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion.


Assuntos
Fosforilação/genética , RNA Polimerase II/genética , Splicing de RNA/genética , Serina/genética , Spliceossomos/genética , Transcrição Gênica/genética , Animais , Linhagem Celular Tumoral , Éxons/genética , Células HeLa , Humanos , Íntrons/genética , Camundongos , RNA Nuclear Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA