Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 241: 115971, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266454

RESUMO

Lipids play key roles in the body, influencing cellular regulation, function, and signalling. Tolcapone, a potent catechol-O-methyltransferase (COMT) inhibitor described to enhance cognitive performance in healthy subjects, was previously shown to impact fatty acid ß-oxidation and oxidative phosphorylation. However, its impact on the brain lipidome remains unexplored. Hence, this study aimed to assess how tolcapone affects the lipidome of the rat pre-frontal cortex (PFC), a region of the brain highly relevant to tolcapone therapeutic effect, while evaluating its influence on operant behaviour. Tolcapone at 20 mg/kg was chronically administered to Wistar rats during a behavioural task and an untargeted liquid chromatography high-resolution mass spectrometry (LC-HR/MS) approach was employed to profile lipid species. The untargeted analysis identified 7227 features, of which only 33% underwent statistical analysis following data pre-processing. The results revealed an improved cognitive performance and a lipidome remodelling promoted by tolcapone. The lipidomic analysis showed 32 differentially expressed lipid species in tolcapone-treated animals (FC ≥ 1.2, p-value ≤ 0.1), and among these several triacylglycerols, cardiolipins and N-acylethanolamine (NAE 16:2) were found upregulated whereas fatty acids, hexosylceramides, and several phospholipids including phosphatidylcholines and phosphatidylethanolamines were downregulated. These preliminary findings shed light on tolcapone impact on lipid pathways within the brain. Although tolcapone improved cognitive performance and literature suggests the significance of lipids in cognition, this study did not conclusively establish that lipids directly drove or contributed to this outcome. Nevertheless, it underscores the importance of lipid modulation and encourages further exploration of tolcapone-associated mechanisms in the central nervous system (CNS).


Assuntos
Catecol O-Metiltransferase , Lipidômica , Humanos , Ratos , Animais , Tolcapona/metabolismo , Tolcapona/farmacologia , Benzofenonas , Nitrofenóis , Inibidores Enzimáticos/farmacologia , Ratos Wistar , Dopamina/metabolismo , Inibidores de Catecol O-Metiltransferase/farmacologia , Encéfalo/metabolismo , Lipídeos
2.
Int J Pharm ; 633: 122607, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36641138

RESUMO

Ascertaining compound exposure and its spatial distribution are essential steps in the drug development process. Desorption electrospray ionization mass spectrometry (DESI-MSI) is a label-free imaging technique capable of simultaneously identify and visualize the distribution of a diverse range of biomolecules. In this study, DESI-MSI was employed to investigate spatial distribution of tolcapone in rat liver and brain coronal - frontal and striatal -sections after a single oral administration of 100 mg/Kg of tolcapone, brain-penetrant compound. Tolcapone was evenly distributed in liver tissue sections whereas in the brain it showed differential distribution across brain regions analyzed, being mainly located in the olfactory bulb, basal forebrain region, striatum, and pre-frontal cortex (PFC; cingulate, prelimbic and infralimbic area). Tolcapone concentration in tissues was compared using DESI-MSI and liquid-chromatography mass spectrometry (LC-MS/MS). DESI-MSI technique showed a higher specificity on detecting tolcapone in liver sections while in the brain samples DESI-MSI did not allow a feasible quantification. Indeed, DESI-MSI is a qualitative technique that allows to observe heterogeneity on distribution but more challenging regarding accurate measurements. Overall, tolcapone was successfully localized in liver and brain tissue sections using DESI-MSI, highlighting the added value that this technique could provide in assisting tissue-specific drug distribution studies.


Assuntos
Encéfalo , Espectrometria de Massas em Tandem , Ratos , Animais , Tolcapona , Cromatografia Líquida , Fígado , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA