Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nanoscale Horiz ; 9(7): 1211-1218, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38775782

RESUMO

A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.


Assuntos
Celulose , Ouro , Nanopartículas Metálicas , Radiossensibilizantes , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Radiossensibilizantes/química , Ouro/química , Celulose/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos
2.
Talanta ; 270: 125612, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169277

RESUMO

Mercury is a pervasive and concerning pollutant due to its toxicity, mobility, and tendency to biomagnify in aquatic and terrestrial ecosystems. Speciation analysis is crucial to assess exposure and risks associated with mercury, as different mercury species exhibit varying properties and toxicities. This study aimed at developing a selective detection method for organic mercury species in a non-invasive biomonitoring matrix like human hair. The method is based on frontal chromatography (FC) in combination with inductively coupled plasma mass spectrometry (ICP-MS), using a low pressure, homemade, anion exchange column inserted in a standard ICP-MS introduction system, without requiring high-performance liquid chromatography (HPLC) hyphenation. In addition to the extreme simplification and cost reduction of the chromatographic equipment, the proposed protocol involves a fast, streamlined and fully integrated sample preparation process (in contrast to existing methods): the optimized procedure features a 15-min ultrasonic assisted extraction procedure and 5 min analysis time. Consequently, up to 100 samples could be analyzed daily, making the method highly productive and suitable for large-scale screening programs in public and environmental health. Moreover, the optimized procedure enables a limit of detection (LOD) of 5.5 µg/kg for a 10 mg hair microsample. All these features undeniably demonstrate a significant advancement in routine biomonitoring practices. To provide additional evidence, the method was applied to forty-nine human hair samples from individuals with varying dietary habits successfully finding a clear correlation between methylmercury levels (ranging from 0.02 to 3.2 mg/kg) in hair and fish consumption, in line with previous literature data.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Monitoramento Biológico , Ecossistema , Mercúrio/análise , Compostos de Metilmercúrio/análise , Cromatografia Líquida de Alta Pressão/métodos , Cabelo/química
3.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985816

RESUMO

The goal of accurately quantifying trace elements in ultrapure silicon carbide (SiC) with a purity target of 5N (99.999% purity) was addressed. The unsuitability of microwave-assisted acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis was proved to depend mainly on the contamination induced by memory effects of PTFE microwave vessels and by the purity levels of acids, even if highly pure ones were used in a clean environment. A new analytical protocol for the direct analysis of the solid material by laser ablation coupled with ICP-MS (LA-ICP-MS) was then exploited. Different samples were studied; the best results were obtained by embedding SiC (powders or grains) in epoxy resin. This technique has the great advantage of avoiding any source of external contamination, as grinding, pressing and sintering pretreatments are totally unnecessary. Two different laser wavelengths (266 and 193 nm) were tested, and best results were obtained with the 266 nm laser. The optimized protocol allows the determination of elements down to the sub-mg/kg level with a good accuracy level.

4.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902936

RESUMO

To correctly manage a collection of historical silks, it is important to detect if the yarn has been originally subjected to degumming. This process is generally applied to eliminate sericin; the obtained fiber is named soft silk, in contrast with hard silk which is unprocessed. The distinction between hard and soft silk gives both historical information and useful indications for informed conservation. With this aim, 32 samples of silk textiles from traditional Japanese samurai armors (15th-20th century) were characterized in a non-invasive way. ATR-FTIR spectroscopy has been previously used to detect hard silk, but data interpretation is challenging. To overcome this difficulty, an innovative analytical protocol based on external reflection FTIR (ER-FTIR) spectroscopy was employed, coupled with spectral deconvolution and multivariate data analysis. The ER-FTIR technique is rapid, portable, and widely employed in the cultural heritage field, but rarely applied to the study of textiles. The ER-FTIR band assignment for silk was discussed for the first time. Then, the evaluation of the OH stretching signals allowed for a reliable distinction between hard and soft silk. Such an innovative point of view, which exploits a "weakness" of FTIR spectroscopy-the strong absorption from water molecules-to indirectly obtain the results, can have industrial applications too.

5.
Front Chem ; 10: 1038796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583150

RESUMO

Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to ß-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36231411

RESUMO

The goals of this work are the evaluation of the performances of official methods in the challenging determination of Cr(VI) in Cr(III)-rich particulate matter, and the development of a novel and robust analytical protocol for this issue. A liquid chromatography inductively coupled plasma mass spectrometry apparatus (LC-ICP-MS), together with an isotope-enriched spike addition technique, was used to allow the study of Cr(III)/Cr(VI) interconversions during the extraction step. An original separation strategy based on Cr(OH)3 head-column stacking was developed to tolerate high concentrations of Cr(III) (up to 10 mg/kg, with a Cr(VI) limit of detection of 0.51 µg/kg) without the need of any sample pretreatment. After observing, the official extraction protocols always yield false positive values in the challenging situation of particulate matter of leather industries (where huge amounts of Cr(III) are present), a new extraction strategy was developed. The novel procedure involves a 48-h extraction at room temperature using a pH-8 phosphate buffer, which demonstrated that no Cr(III)/Cr(VI) interconversions occur during this phase. To get rid of any possible interference caused by co-extracted substances, the measurement of the redox potential, together with the addition of a Fe(II)/Fe(III) redox buffer was performed to fix chromium speciation during the overall analytical protocol.


Assuntos
Cromo , Compostos Férricos , Cromo/análise , Poeira/análise , Compostos Ferrosos , Isótopos , Espectrometria de Massas/métodos , Material Particulado/análise , Fosfatos
7.
Anal Chim Acta ; 1206: 339553, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473882

RESUMO

A fast and cost-effective procedure based on Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) for the selective determination of methylmercury (MeHg) is proposed and validated for fish tissue analysis. Selectivity for MeHg is achieved by simply inserting a strong anion exchange resin to block inorganic mercury as negatively charged chloride species, leaving MeHg unretained. The procedure features a 15 min extraction time followed by a 100 s analysis time achieving a limit of detection of 1.6 µg kg-1 on solid samples. The effect of the solution composition and inorganic mercury concentration were extensively studied to fully assess the selectivity of the procedure: Hg(II):MeHg ratios up to 50 are tolerated and cause systematic errors lower than 15%. The entire procedure was successfully validated by standard reference material from the marine food web, namely fish muscle and liver plus zooplankton. The method was finally applied to the detection of MeHg in the marine trophic web of Djibouti (Gulf of Aden): a trophic magnification factor of 13.5 proved the high risk associated with the biomagnification of methylmercury.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Peixes , Cadeia Alimentar , Mercúrio/análise , Compostos de Metilmercúrio/análise , Análise Espectral
8.
Methods Protoc ; 5(2)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35448695

RESUMO

The complete dissolution of silicate-containing materials, often necessary for elemental determination, is generally performed by microwave-assisted digestion involving the forced use of hydrofluoric acid (HF). Although highly efficient in dissolving silicates, this acid exhibits many detrimental effects (e.g., formation of precipitates, corrosiveness to glassware) that make its removal after digestion essential. The displacement of HF is normally achieved by evaporation in open-vessel systems: atmospheric contamination or loss of analytes can occur when fuming-off HF owing to the non-ultraclean conditions necessarily adopted for safety reasons. This aspect strongly hinders determination at the ultra-trace level. To overcome this issue, we propose a clean and safe microwave-assisted procedure to induce the evaporative migration of HF inside a sealed "vessel-inside-vessel" system: up to 99.9% of HF can be removed by performing two additional microwave cycles after sample dissolution. HF migrates from the digestion solution to a scavenger (ultrapure H2O) via a simple physical mechanism, and then, it can be safely dismissed/recycled. The procedure was validated by a soil reference material (NIST 2710), and no external or cross-contamination was observed for the 27 trace elements studied. The results demonstrate the suitability of this protocol for ultra-trace analysis when the utilization of HF is mandatory.

9.
Materials (Basel) ; 14(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34683531

RESUMO

In this study, the microstructure of mock-up mortar specimens for a historic environment, composed of different mixtures, was studied using mercury intrusion porosity (MIP) and microcomputed tomography (µCT), highlighting the advantages and drawbacks of both techniques. Porosity, sphericity, and pores size distribution were studied, evaluating changes according to mortar composition (aerial and hydraulic binders, quartz sand, and crushed limestone aggregate). The µCT results were rendered using 3D visualization software, which provides complementary information for the interpretation of the data obtained using 3D data-analysis software. Moreover, µCT contributes to the interpretation of MIP results of mortars. On the other hand, MIP showed significant ink-bottle effects in lime and cement mortars samples that should be taken into account when interpreting the results. Moreover, the MIP results highlighted how gypsum mortar samples display a porosity distribution that is best studied using this technique. This multi-analytical approach provides important insights into the interpretation of the porosimetric data obtained. This is crucial in the characterization of mortars and provides key information for the study of building materials and cultural heritage conservation.

10.
J Hazard Mater ; 412: 125280, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33550126

RESUMO

An analytical method derived from the coupling of frontal chromatography (FC) with Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is proposed for the fast determination of Cr(VI) ultra-traces. The insertion of a short, homemade column filled with a strong cationic exchange resin in the flow-path of a commercial ICP-MS allows on-line trapping of cationic Cr(III) and elution of anionic Cr(VI). As a result, only the Cr(VI) front reaches the detector. This separation mechanism enables the highly selective quantification of Cr(VI) ultra-traces (LOD = 0.026 µg/kg - defined as 3 s of 10 replicated measurements of a 0.050 µg/kg solution) over a wide linearity range (tested up to 1024 µg/kg), even in the presence of Cr(III) concentration as high as 50 mg/kg. Key advantages of the proposed method are the extremely short analysis time (one minute), together with the simplicity and cost-effectiveness of the modifications applied over a commercial ICP-MS instrumental configuration. No time- or chemical-consuming pretreatments are needed: it is only necessary to acidify the sample prior Cr(VI) determination, as normally performed for common ICP-MS analysis. The applicability of the method was demonstrated over mineral water samples and toy migration solutions.

11.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33434889

RESUMO

Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.


Assuntos
Bioimpressão , Vesículas Extracelulares , Impressão Tridimensional , Comunicação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Medicina Regenerativa
12.
Biosensors (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916940

RESUMO

The use of insoluble bismuth salts, typically BiPO4, is known to be a viable alternative to classical Bi3+ ion electrochemical reduction for the preparation of bismuth film electrodes (BiFE) on screen-printed electrodes. The freshly prepared electrodes are indefinitely stable, and the active bismuth film is simply formed by in situ reduction. Two aspects are still to be investigated, namely the bismuth distribution on the working electrode and the possible residual presence of the counteranion, namely phosphate. High-vacuum techniques such as electron microscopy or spectroscopy, which are commonly employed for this purpose, cannot be safely used: the bismuth surface is well-known to reconstruct and recrystallize under the electron beam in vacuum. Here, we demonstrate the suitability and the effectiveness of laser ablation ICP-MS (LA-ICP-MS, a technique that vaporizes and analyzes the surface material under flowing helium at atmospheric pressure) for the characterization of BiFE. Fast and stable measurements of bismuth and phosphorous distribution are achieved with the advantage of a minimum alteration of the sample surface, avoiding possible interferences. This investigation evidenced how, upon reductive activation, the bismuth film is distributed with a radial symmetry and the phosphate counteranion is completely absent on the working electrode surface.


Assuntos
Bismuto/química , Eletrodos , Terapia a Laser , Espectrofotometria Atômica , Eletroquímica , Lasers , Análise Espectral
13.
Chem Asian J ; 15(2): 301-309, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793241

RESUMO

Pt nanoparticles are typically decorated as co-catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co-catalyst loadings is a key challenge in the field. We explore a dewetting-dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co-catalyst mass activity for H2 generation. For this, we sputter first Pt-Ni bi-layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting-alloying of the Pt-Ni bi-layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt-decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non-porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co-catalyst, which provides an increased surface-to-volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co-catalyst surface for H2 evolution.

14.
Anal Chem ; 91(21): 13810-13817, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31559825

RESUMO

A frontal chromatography-ICP-MS method (FC-ICP-MS) is proposed as an innovative approach for fast elemental speciation analysis: inorganic arsenic speciation was selected as the first case study to prove the feasibility of the technique and to explore its potentialities and limits. The principal benefits of the FC-ICP-MS approach are the short analysis time and the very simple instrumental setup. As(III) and As(V) front separation is performed over a strong anion exchanger at pH 7.5. After the optimization of the instrumental setup and the frontal chromatographic parameters, As(III) and As(V) concentrations up to 240 µg/kg can be determined within 120-140 s using different univariate and multivariate calibration approaches. Best results in terms of accuracy in prediction were obtained using the partial least squares (PLS) calibration achieving limits of detection of 0.18 and 0.21 µg/kg for As(III) and As(V), respectively. This approach was also used to establish the figures of merit of the method. The proved feasibility and good performances (in terms of analysis time and accuracy) of this technique lay the groundwork for future applications of FC-ICP-MS for the speciation of other elements.


Assuntos
Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Arsênio/química , Arsenicais/análise , Arsenicais/química , Calibragem , Cromatografia por Troca Iônica , Resinas de Troca Iônica , Limite de Detecção , Fatores de Tempo
15.
Int J Anal Chem ; 2019: 5180610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713555

RESUMO

Subboiling distillation has been used since two decades for the purification of analytical grade acids from inorganic contaminants and demonstrated an efficient method to obtain pure acids starting from reagent grade chemicals. Nevertheless, the effect of the subboiling parameters on the purity of the distilled acids has never been methodically investigated. Aim of the present research is a systematic evaluation of the subboiling distillation protocol for the production of pure hydrochloric and nitric acid. In particular, the effect of the subboiling temperature and the number of subsequent distillations was investigated as these parameters were recognised as the most important factors controlling acid purity, acid concentration, and distillation yield. The concentration of twenty elements in the purified acids was determined by Inductively Coupled Plasma-Mass Spectrometry. As a result, the subboiling temperature (up to 82°C) and the number of subsequent distillations (up to four) were demonstrated not to affect the purity of the distilled nitric and hydrochloric acids. Under normal laboratory conditions, the residual elemental concentrations were in most cases below 10 ng/L in both nitric (2.75% w/w) and hydrochloric (0.1 M) blanks. Ultrapure nitric and hydrochloric acids could accordingly be produced under the most favorable conditions, i.e., the highest temperature and one distillation process only.

16.
Photochem Photobiol Sci ; 18(5): 1046-1055, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30534751

RESUMO

Gold-decorated TiO2 nanotubes were used for the photocatalytic abatement of Hg(ii) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO2. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(ii) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(ii) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(ii) abatements up to 90% were observed after 24 h. ICP-MS analysis revealed that the removed Hg(ii) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(i) to Hg(ii). After four catalytic-regeneration cycles, only a 10% decrease of activity was observed.

17.
Talanta ; 179: 100-106, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310208

RESUMO

Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) is a powerful method to determine the elemental composition of solid-state samples as it combines the high sensitivity and isotope selectivity of ICP-MS detection and the simplicity of laser ablation sampling. This technique enables rapid multiple sampling of the analysed material, such as needed for mapping or in-depth profiling applications. However, the duration of these measurements is practically restricted by the time taken for the particle to be transported from the sampling point to the ICP torch. The ablation cell, i.e. the sample holder, should combine high removal rate, high efficiency (i.e. complete transport of the ablated material) and reduced memory effects. These goals may be achieved by carefully designing the geometry of the cell and its gas flow patterns. A new cell design which enables a homogeneous wahout time of around 210 ms from a cylindrical chamber with 70 mm diameter is introduced in this paper. Washout time was determined as the time for the transient signal of 238U from a NIST610 glass standard to fall to 10% of its peak value. This result is achieved by combining a diffused, cylindrical flow pattern with an extraction tube coaxial with the laser beam and fixed to the laser assembly which enables the sampling point to be constantly positioned on the ablation spot. The lower part of the cell is mounted on the x,y stage for sample movement: the cell sealing is warranted by a viscous film junction between the lower and upper cell parts. Optimisation and performances of the apparatus are discussed in detail and performances are compared to existing designs.

18.
Biosensors (Basel) ; 6(3)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455338

RESUMO

Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.


Assuntos
Bismuto , Eletroquímica , Eletrodos , Carbono , Polímeros , Propriedades de Superfície
19.
Talanta ; 159: 29-33, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474275

RESUMO

Microwaves are widely used to assist digestion, general sample treatment and synthesis. The use of aqua regia is extensively adopted for the closed vessel mineralization of samples prior to trace element detection, leading to the contamination of microwave vessels by chlorine containing species. The latter are entrapped in the polymeric matrix of the vessels, leading to memory effects that are difficult to remove, among which the risk of silver incomplete recoveries by removal of the sparingly soluble chloride is the predominant one. In the present paper, we determined by mass spectrometry that hydrogen chloride is the species entrapped in the polymeric matrix and responsible for vessel contamination. Moreover, several decontamination treatments were considered to assess their efficiency, demonstrating that several cleaning cycles with water, nitric acid or silver nitrate in nitric acid were inefficient in removing chloride contamination (contamination reduction around 90%). Better results (≈95% decrease) were achieved by a single decontamination step in alkaline environment (sodium hydroxide or ammonia). Finally, a thermal treatment in a common laboratory oven (i.e. without vacuum and ventilation) was tested: a one hour heating at 150°C leads to a 98.5% decontamination, a figure higher than the ones obtained by wet treatments which requires comparable time. The latter treatment is a major advancement with respect to existing treatments as it avoids the need of a vacuum oven for at least 17h as presently proposed in the literature.

20.
Ann Occup Hyg ; 59(5): 572-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25669201

RESUMO

INTRODUCTION: Workers involved in the production of Cd/As-based photovoltaic modules may be routinely or accidentally exposed to As- or Cd-containing inorganic compounds. METHODS: Workers' exposure to As and Cd was investigated by environmental monitoring following a worst-case approach and biological monitoring from the preparation of the working facility to its decommissioning. Workplace surface contamination was also evaluated through wipe-test sampling. RESULTS: The highest mean airborne concentrations were found during maintenance activities (As = 0.0068 µg m(-3); Cd = 7.66 µg m(-3)) and laboratory simulations (As = 0.0075 µg m(-3); Cd = 11.2 µg m(-3)). These types of operations were conducted for a limited time during a typical work shift and only in specifically suited containment areas, where the highest surface concentrations were also found (laboratory: As = 2.94 µg m(-2), Cd = 167 µg m(-2); powder containment booth: As = 4.35 µg m(-2), Cd = 1500 µg m(-2)). The As and Cd urinary levels (As_u; Cd_u) were not significantly different for exposed (As_u = 6.11±1.74 µg l(-1); Cd_u = 0.24±2.36 µg g(-1) creatinine) and unexposed workers (As_u = 6.11±1.75 µg l(-1); Cd_u = 0.22±2.08 µg g(-1) creatinine). CONCLUSION: Despite airborne arsenic and cadmium exposure well below the threshold limit value (TLV) when the operation is appropriately maintained in line, workers who are involved in various operations (maintenance, laboratory test) could potentially be at risk of significant exposure, well in excess of the TLV. Nevertheless, the biological monitoring data did not show significant occupationally related arsenic and cadmium intake in workers and no significant changes or differences in arsenic and cadmium urinary level among the exposed and unexposed workers were found.


Assuntos
Arsênio/análise , Cádmio/análise , Indústria Química , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Arsênio/urina , Cádmio/urina , Creatinina/urina , Fontes de Energia Elétrica , Monitoramento Ambiental/métodos , Humanos , Estudos Longitudinais , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA