Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137558

RESUMO

Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.

2.
Sci Rep ; 10(1): 11779, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678237

RESUMO

Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.


Assuntos
Implantes Absorvíveis , Tecido Adiposo/fisiologia , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual , Fenômenos Químicos , Ácido Poliglicólico , Análise Espectral , Retalhos Cirúrgicos , Técnicas de Cultura de Tecidos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA