Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(5): ar72, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568782

RESUMO

Cilia generate three-dimensional waveforms required for cell motility and transport of fluid, mucus, and particles over the cell surface. This movement is driven by multiple dynein motors attached to nine outer doublet microtubules that form the axoneme. The outer and inner arm dyneins are organized into 96-nm repeats tandemly arrayed along the length of the doublets. Motility is regulated in part by projections from the two central pair microtubules that contact radial spokes located near the base of the inner dynein arms in each repeat. Although much is known about the structures and protein complexes within the axoneme, many questions remain about the regulatory mechanisms that allow the cilia to modify their waveforms in response to internal or external stimuli. Here, we used Chlamydomonas mbo (move backwards only) mutants with altered waveforms to identify at least two conserved proteins, MBO2/CCDC146 and FAP58/CCDC147, that form part of a L-shaped structure that varies between doublet microtubules. Comparative proteomics identified additional missing proteins that are altered in other motility mutants, revealing overlapping protein defects. Cryo-electron tomography and epitope tagging revealed that the L-shaped, MBO2/FAP58 structure interconnects inner dynein arms with multiple regulatory complexes, consistent with its function in modifying the ciliary waveform.


Assuntos
Axonema , Dineínas , Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Cílios/metabolismo , Proteínas/metabolismo , Flagelos/metabolismo
2.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577467

RESUMO

Ciliary motility requires the spatiotemporal coordination of multiple dynein motors by regulatory complexes located within the 96 nm axoneme repeat. Many organisms can alter ciliary waveforms in response to internal or external stimuli, but little is known about the specific polypeptides and structural organization of complexes that regulate waveforms. In Chlamydomonas, several mutations convert the ciliary waveform from an asymmetric, ciliary-type stroke to a symmetric, flagellar-type stroke. Some of these mutations alter subunits located at the inner junction of the doublet microtubule and others alter interactions between the dynein arms and the radial spokes. These and other axonemal substructures are interconnected by a network of poorly characterized proteins. Here we re-analyze several motility mutants (mbo, fap57, pf12/pacrg) to identify new components in this network. The mbo (move backwards only) mutants are unable to swim forwards with an asymmetric waveform. Proteomics identified more than 19 polypeptides that are missing or reduced in mbo mutants, including one inner dynein arm, IDA b. Several MBO2-associated proteins are also altered in fap57 and pf12/parcg mutants, suggesting overlapping networks. Two subunits are highly conserved, coiled coil proteins found in other species with motile cilia and others contain potential signaling domains. Cryo-electron tomography and epitope tagging revealed that the MBO2 complex is found on specific doublet microtubules and forms a large, L-shaped structure that contacts the base of IDA b that interconnects multiple dynein regulatory complexes and varies in a doublet microtubule specific fashion.

3.
Mol Biol Cell ; 27(15): 2404-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251063

RESUMO

The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.


Assuntos
Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Animais , Chlamydomonas/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA