Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124772, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172706

RESUMO

Evolution of new variants of SARS-CoV-2 warrant the need for the continued efforts in identifying target-oriented new drugs. Dual targeting agents against MPro and PLPro not only overcome the incomplete efficacy but also the drug resistance, which is common problem. Since both these are cysteine proteases, we designed 2-chloroquinoline based molecules with additional imine moiety in the middle as possible nucleophilic warheads. In the first round of design and synthesis, three molecules (C3, C4 and C5) inhibited (Ki < 2 µM) only MPro by binding covalently to C145 and one molecule (C10) inhibited both the proteases non-covalently (Ki < 2 µM) with negligible cytotoxicity. Further conversion of the imine in C10 to azetidinone (C11) improved the potency against both the enzymes in the nanomolar range (820 nM against MPro and 350 nM against PLPro) with no cytotoxicity. Conversion of imine to thiazolidinone (C12), reduced the inhibition by 3-5 folds against both the enzymes. Biochemical and computational studies suggest that C10-C12 bind in the substrate binding pocket of MPro and in the BL2 loop of the PLPro. Since these dual inhibitors have least cytotoxicity, they could be further explored as therapeutics against the SARS-CoV-2 and other analogous viruses.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2 , Iminas , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
2.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140881, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396098

RESUMO

In almost all living cells, methionine aminopeptidase (MetAP) co-translationally cleaves the initiator methionine in at least 70% of the newly synthesized polypeptides. MetAPs are typically classified into Type 1 and Type 2. While prokaryotes and archaea contain only either Type 1 or Type 2 MetAPs respectively, eukaryotes contain both types of enzymes. Almost all MetAPs published till date cleave only methionine from the amino terminus of the substrate peptides. Earlier experiments on crude Type 2a MetAP isolated from Pyrococcus furiosus (PfuMetAP2a) cosmid protein library was shown to cleave leucine in addition to methionine. Authors in that study have ruled out the PfuMetAP2a activity against leucine substrates and assumed it to be a background reaction contributed by other contaminating proteases. In the current paper, using the pure recombinant enzyme, we report that indeed activity against leucine is directly carried out by the PfuMetAP2a. In addition, the natural product ovalicin which is a specific covalent inhibitor of Type 2 MetAPs does not show efficient inhibition against the PfuMetAP2a. Bioinformatic analysis suggested that a glycine in eukaryotic MetAP2s (G222 in human MetAP2b) and asparagine (N53 in PfuMetAP2a) in archaeal MetAP2s positioned at the analogous position. N53 side chain forms a hydrogen bond with a conserved histidine (H62) at the entrance of the active site and alters its orientation to accommodate the ovalicin. This slight orientational difference of the H62, reduces affinity of the ovalicin by 300,000-fold when compared with the HsMetAP2b inhibition. This difference in the activity is partly reduced in the case of N53G mutation of the PfuMetAP2a.


Assuntos
Aminopeptidases , Archaea , Humanos , Sequência de Aminoácidos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Archaea/genética , Leucina , Metionina , Metionil Aminopeptidases/química , Metionil Aminopeptidases/genética , Metionil Aminopeptidases/metabolismo
3.
Bioorg Chem ; 128: 106095, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049321

RESUMO

Ribosome assisted protein synthesis in all prokaryotes begins with a formylated methionine. Deformylation and demethionylation of these newly synthesized proteins are critical co-translational events carried out by peptide deformylase (PDF) and methionine aminopeptidase (MetAP) in all living cells. Since the mechanism of N-terminal modification is common between the infectious microbes and the host human cells, it is a challenge to identify selective inhibitors. Given that both MetAP and PDF are metalloenzymes, and have strong affinity for hydroxamic acids, we reasoned that the azaindole-based hydroxamic acids could inhibit the PDF enzymes. In the present study we describe the screening of a 17-compound library with 4- and 5- substituted azaindole hydroxamic acid derivatives against PDF enzyme from H. influenzae (HiPDF), M. tuberculosis (MtPDF) and human PDF (HsPDF). Several of these molecules showed nanomolar inhibition against HiPDF enzyme, best at 21 nM (15). On the other hand, none of these compounds inhibited the human enzyme while only two molecules showed moderate inhibition against Mtb enzyme. Surprisingly only 5-substituted azaindole derivatives inhibited the PDF enzymes. Some of the 5-substituted azaindole compounds inhibited the growth of different microbes indicating their potential application in antimicrobial therapy. Crystallographic and modeling studies provided the mechanistic view of regioselective inhibition.


Assuntos
Haemophilus influenzae , Ácidos Hidroxâmicos , Amidoidrolases , Antibacterianos/farmacologia , Compostos Aza , Inibidores Enzimáticos/química , Escherichia coli , Haemophilus influenzae/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Indóis , Metionina/metabolismo
4.
Antibiotics (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009995

RESUMO

Methionine aminopeptidases (MetAPs) are attractive drug targets due to their essential role in eukaryotes as well as prokaryotic cells. In this study, biochemical assays were performed on newly synthesized Isatin-pyrazole hydrazones (PS1-14) to identify potent and selective bacterial MetAPs inhibitors. Compound PS9 inhibited prokaryotic MetAPs, i.e., MtMetAP1c, EfMetAP1a and SpMetAP1a with Ki values of 0.31, 6.93 and 0.37 µM, respectively. Interestingly, PS9 inhibited the human analogue HsMetAP1b with Ki (631.7 µM) about ten thousand-fold higher than the bacterial MetAPs. The in vitro screening against Gram-positive (Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli) bacterial strains also exhibited their antibacterial potential supported by minimum bactericidal concentration (MBC), disk diffusion assay, growth curve and time-kill curve experiments. Additionally, PS6 and PS9 had synergistic effects when combined with ampicillin (AMP) and ciprofloxacin (CIP) against selective bacterial strains. PS9 showed no significant cytotoxic effect on human RBCs, HEK293 cells and Galleria mellonella larvae in vivo. PS9 inhibited the growth of multidrug-resistant environmental isolates as it showed the MIC lower than the standard drugs used against selective bacterial strains. Overall, the study suggested PS9 could be a useful candidate for the development of antibacterial alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA