Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Med ; 30(3): 670-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321219

RESUMO

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Assuntos
Coinfecção , Vírus da Dengue , Dengue , Dengue Grave , Humanos , Criança , Dengue/epidemiologia , Dengue Grave/epidemiologia , Anticorpos Antivirais , Coinfecção/epidemiologia , Febre
2.
J Virol ; 97(11): e0074623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855600

RESUMO

IMPORTANCE: CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.


Assuntos
Linfócitos T CD8-Positivos , Dengue , Humanos , Linfócitos T CD8-Positivos/imunologia , Citocinas , Dengue/genética , Dengue/imunologia , Dengue/patologia , Interferon gama/genética , Febre/virologia , Subpopulações de Linfócitos T/imunologia
3.
Structure ; 31(7): 801-811.e5, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37167972

RESUMO

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais , Epitopos , Testes de Neutralização
4.
Arch Biochem Biophys ; 741: 109603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084805

RESUMO

Plant dehydroascorbate reductases (DHARs) are only known as soluble antioxidant enzymes of the ascorbate-glutathione pathway. They recycle ascorbate from dehydroascorbate, thereby protecting plants from oxidative stress and the resulting cellular damage. DHARs share structural GST fold with human chloride intracellular channels (HsCLICs) which are dimorphic proteins that exists in soluble enzymatic and membrane integrated ion channel forms. While the soluble form of DHAR has been extensively studied, the existence of a membrane integrated form remains unknown. We demonstrate for the first time using biochemistry, immunofluorescence confocal microscopy, and bilayer electrophysiology that Pennisetum glaucum DHAR (PgDHAR) is dimorphic and is localized to the plant plasma membrane. In addition, membrane translocation increases under induced oxidative stress. Similarly, HsCLIC1 translocates more into peripheral blood mononuclear cells (PBMCs) plasma membrane under induced oxidative stress conditions. Moreover, purified soluble PgDHAR spontaneously inserts and conducts ions in reconstituted lipid bilayers, and the addition of detergent facilitates insertion. In addition to the well-known soluble enzymatic form, our data provides conclusive evidence that plant DHAR also exists in a novel membrane-integrated form. Thus, the structure of DHAR ion channel form will help gain deeper insights into its function across various life forms.


Assuntos
Leucócitos Mononucleares , Oxirredutases , Humanos , Oxirredutases/metabolismo , Oxirredução , Ácido Ascórbico/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Canais Iônicos/metabolismo
5.
bioRxiv ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324804

RESUMO

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.

6.
Sci Adv ; 8(40): eadd2032, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197988

RESUMO

In this study, by characterizing several human monoclonal antibodies (mAbs) isolated from single B cells of the COVID-19-recovered individuals in India who experienced ancestral Wuhan strain (WA.1) of SARS-CoV-2 during early stages of the pandemic, we found a receptor binding domain (RBD)-specific mAb 002-S21F2 that has rare gene usage and potently neutralized live viral isolates of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron sublineages (BA.1, BA.2, BA.2.12.1, BA.4, and BA.5) with IC50 ranging from 0.02 to 0.13 µg/ml. Structural studies of 002-S21F2 in complex with spike trimers of Omicron and WA.1 showed that it targets a conformationally conserved epitope on the outer face of RBD (class 3 surface) outside the ACE2-binding motif, thereby providing a mechanistic insights for its broad neutralization activity. The discovery of 002-S21F2 and the broadly neutralizing epitope it targets have timely implications for developing a broad range of therapeutic and vaccine interventions against SARS-CoV-2 variants including Omicron sublineages.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Antivirais , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
7.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835270

RESUMO

Dengue is an important public health problem worldwide, with India contributing nearly a third of global dengue disease burden. The measurement of neutralizing antibody responses is critical for understanding dengue pathophysiology, vaccine development and evaluation. Historically, dengue virus neutralization titers were measured using plaque reduction neutralization tests (PRNTs), which were later adapted to focus reduction neutralization tests (FRNTs). Given the slow and laborious nature of both these assays, there has been interest in adapting a high-throughput flow cytometry based neutralization assay. However, flow cytometry based assays typically underestimate neutralization titers, and in situations where the titers are low they can even fail to detect neutralization activity. In this study, by evaluating graded numbers of input Vero cell numbers and viral inoculum, we optimized the flow cytometry based neutralization assay in such a way that it is sensitive and scores titers that are in concordance with focus reduction neutralization tests for each of the four dengue virus serotypes (p < 0.0001). Given that dengue is a global public health concern, and several research groups are making efforts to understand its pathophysiology and accelerate vaccine development and evaluation both in India and worldwide, our findings have timely significance for facilitating these efforts.

8.
J Virol ; 95(23): e0061021, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523972

RESUMO

Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.


Assuntos
Dengue/imunologia , Imunofenotipagem/métodos , Plasmócitos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Citocinas/genética , Vírus da Dengue/imunologia , Humanos , Índia , Plasmócitos/metabolismo
9.
Virology ; 558: 13-21, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706207

RESUMO

India is one of the most affected countries by COVID-19 pandemic; but little is understood regarding immune responses to SARS-CoV-2 in this region. Herein we examined SARS-CoV-2 neutralizing antibodies, IgG, IgM, IgA and memory B cells in COVID-19 recovered individual from India. While a vast majority of COVID-19 recovered individuals showed SARS-CoV-2 RBD-specific IgG, IgA and IgM antibodies (38/42, 90.47%; 21/42, 50%; 33/42, 78.57% respectively), only half of them had appreciable neutralizing antibody titers. RBD-specific IgG, but not IgA or IgM titers, correlated with neutralizing antibody titers and RBD-specific memory B cell frequencies. These findings have timely significance for identifying potential donors for plasma therapy using RBD-specific IgG assays as surrogate measurement for neutralizing antibodies in India. Further, this study provides useful information needed for designing large-scale studies towards understanding of inter-individual variation in immune memory to SARS CoV-2 natural infection for future vaccine evaluation and implementation efforts.


Assuntos
Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Linfócitos B , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Linfócitos B/citologia , Linfócitos B/imunologia , COVID-19/epidemiologia , Humanos , Imunidade Humoral , Isotipos de Imunoglobulinas/análise , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Adulto Jovem
10.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155134

RESUMO

Chikungunya virus (CHIKV) infection causes acute febrile illness in humans, and some of these individuals develop a debilitating chronic arthritis that can persist for months to years for reasons that remain poorly understood. In this study from India, we characterized antibody response patterns in febrile chikungunya patients and further assessed the association of these initial febrile-phase antibody response patterns with protection versus progression to developing chronic arthritis. We found 5 distinct patterns of the antibody responses in the febrile phase: no CHIKV binding or neutralizing (NT) antibodies but PCR positive, IgM alone with no NT activity, IgM alone with NT activity, IgM and IgG without NT activity, and IgM and IgG with NT activity. A 20-month follow-up showed that appearance of NT activity regardless of antibody isotype or appearance of IgG regardless of NT activity during the initial febrile phase was associated with a robust protection against developing chronic arthritis in the future. These findings, while providing potentially novel insights on correlates of protective immunity against chikungunya-induced chronic arthritis, suggest that qualitative differences in the antibody response patterns that have evolved during the febrile phase can serve as biomarkers that allow prediction of protection or progression to chronic arthritis in the future.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos , Artrite/prevenção & controle , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Anticorpos Antivirais/sangue , Artrite/sangue , Artrite/imunologia , Febre de Chikungunya/sangue , Vírus Chikungunya/metabolismo , Doença Crônica , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue
11.
Int J Infect Dis ; 84S: S57-S63, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30658170

RESUMO

BACKGROUND: The Indian population is facing highest dengue burden worldwide supporting an urgent need for vaccines. For vaccine introduction, evaluation and interpretation it is important to gain a critical understanding of immune memory induced by natural exposure. However, immune memory to dengue remains poorly characterized in this region. METHODS: We enumerated levels of dengue specific memory B cells (MBC), neutralizing (NT) and binding antibodies in healthy adults (n=70) from New Delhi. RESULTS: NT-antibodies, binding antibodies and MBC were detectable in 86%, 86.56% and 81.63% of the subjects respectively. Among the neutralizing positive subjects, 58%, 27%, 5% and 10% neutralized all four, any three, any two and any one dengue serotypes respectively. The presence of the neutralizing antibodies was associated with the presence of the MBC and binding antibodies. However, a massive interindividual variation was observed in the levels of the neutralizing antibodies (range, <1:50-1:30,264), binding antibodies (range, 1:3,000-1:134,000,) as well as the MBC (range=0.006%-5.05%). CONCLUSION: These results indicate that a vast majority of the adults are immune to multiple dengue serotypes and show massive interindividual variation in neutralizing/binding antibodies and MBCs - emphasizing the importance of monitoring multiple parameters of immune memory in order to properly plan, evaluate and interpret dengue vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Adulto , Reações Cruzadas , Dengue/epidemiologia , Feminino , Humanos , Índia , Masculino , Sorogrupo , Adulto Jovem
12.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429339

RESUMO

Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite neutralizers are potential candidates for isolation of HIV-1 bNAbs. The coexistence of bNAbs such as BG18 with neutralization-susceptible autologous viruses in an HIV-1-infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1-infected children than in adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral-naive HIV-1 clade C chronically infected pediatric elite neutralizer, AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, a median inhibitory dilution (ID50) value of 1,246, and presence of N160 and N332 supersite-dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses, exhibited substantial indels despite limited somatic hypermutations, interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy, and demonstrated high binding affinity. In addition, AIIMS-P01 neutralized the coexisting and evolving autologous viruses, suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in the AIIMS_330 pediatric elite neutralizer. Such pediatric elite neutralizers can serve as potential candidates for isolation of novel HIV-1 pediatric bNAbs and for understanding the coevolution of virus and host immune response.IMPORTANCE More than 50% of the HIV-1 infections globally are caused by clade C viruses. To date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are under way to design immunogens that can elicit correlates of protection upon vaccination. Here, we report the isolation and characterization of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01, from a clade C chronically infected pediatric elite neutralizer. The N332 supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibited substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation and characterization of bNAbs contributing to the plasma breadth in HIV-1 chronically infected children may help provide a better understanding of their role in controlling HIV-1 infection.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , HIV-1/imunologia , Adulto , Antirretrovirais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Evolução Biológica , Criança , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Soropositividade para HIV , Humanos , Masculino , Testes de Neutralização , Vacinação , Viremia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
13.
J Virol ; 90(24): 11259-11278, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707928

RESUMO

Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR- CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE: Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Vírus da Dengue/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Transcriptoma/imunologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Adolescente , Anticorpos/farmacologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/genética , Antígenos CD28/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/metabolismo , Feminino , Regulação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Imunidade Celular , Índia , Lactente , Interferon gama/genética , Interferon gama/imunologia , Ionomicina/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Cultura Primária de Células , RNA Helicases/genética , RNA Helicases/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/virologia , Acetato de Tetradecanoilforbol/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA