Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
3 Biotech ; 13(11): 369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37849768

RESUMO

The present study aimed to investigate the molecular diversity of arbuscular mycorrhizal fungi (AMF) in natural seleniferous soils and their role in protecting plants from Se toxicity. The genomic DNA extracted from maize roots grown in seleniferous and non-seleniferous regions was amplified using AMF-specific primers by nested PCR. The 1.5 kb amplicon spanning pSSU-ITS-pLSU of 18S rRNA of AMF was deciphered using the Illumina Miseq Next Generation Sequencing (NGS) technique. A total of 17 AMF species from the seleniferous region and 18 AMF species from the non-seleniferous region were identified. The number of reads of Glomus irregularis, G. custos, and G. intraradices was higher in seleniferous soil than in non-seleniferous soil, indicating their tolerance to Se. A consortium of Se-tolerant AMF inoculum was prepared and inoculated to maize plants, grown in natural seleniferous soils. AMF-inoculated plants had healthy growth with higher root, shoot, and grain biomass than non-AMF-inoculated plants. AMF inoculation leads to higher Se accumulation in roots but lesser Se accumulation in shoots and seeds of inoculated maize plants as compared to control plants. Present study results suggest that AMF species from seleniferous soils have the potential to be used as biofertilizers to improve plant growth and tolerate Se toxicity in seleniferous soils.

2.
Environ Monit Assess ; 195(9): 1019, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548767

RESUMO

Due to anthropogenic activities, heavy metals such as cadmium (Cd) and arsenic (As) are one of the most toxic xenobiotics contaminating water, thus affecting human health and the environment. The objective of the present investigation was to study the effect of ureolytic bacteria Bacillus paramycoides-MSR1 for the bioremediation of Cd and As from contaminated water. The B. paramycoides showed high resistance to heavy metals, Cd and As, with minimum inhibitory concentration (MIC) of 12.84 µM and 48.54 µM, respectively. The urease activity and calcium carbonate (CaCO3) precipitation were evaluated in artificial wastewater with different concentrations of Cd (0, 10, 20, 30, 40, 50, and 60 µM) and As (0, 20, 40, 60, 80, and 100 µM). The maximum urease activity in Cd-contaminated artificial wastewater was observed after 96 hours, which showed a 76.1% decline in urease activity as the metal concentration increased from 0 to 60 µM. Similarly, 14.1% decline in urease activity was observed as the concentration of As was increased from 0 to 100 µM. The calcium carbonate precipitation at the minimum inhibitory concentration of Cd and As-contaminated artificial wastewater was 189 and 183 mg/100 ml, respectively. The percentage removal of metal from artificially contaminated wastewater with varied concentrations was analyzed using atomic absorption spectroscopy (AAS). After 168 hours of incubation, 93.13% removal of Cd and 94.25% removal of As were observed. Microstructural analysis proved the presence of calcium carbonate in the form of calcite, confirming removal of cadmium and arsenic by microbially induced calcium carbonate precipitation (MICCP) to be promising technique for water decontamination.


Assuntos
Arsênio , Metais Pesados , Humanos , Cádmio/química , Biomineralização , Urease , Águas Residuárias , Monitoramento Ambiental , Carbonato de Cálcio/química
3.
Colloids Surf B Biointerfaces ; 227: 113362, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257298

RESUMO

The study proposes an alternative therapeutics to diminish bacterial attachment in biomedical implants by modifying their surface with passive coatings. A uniform, thin-film of chitosan/polyvinyl alcohol/graphene oxide (CS/PVA/GO) was coated on 316 L stainless steel (SS) surface through spread casting followed by solvent evaporation. The abundant anchoring sites available at macromolecular interfaces of chitosan/PVA matrix facilitated a smooth, dense loading of GO. The effect of GO content on physicochemical features, antibacterial potential, and biocompatibility of coatings was thoroughly studied. The hybrid films displayed good adhesion behavior, and UV-protection ability with desired mechanical and thermal stability when coated on SS surface. Coatings manifested a 1.5-1.7 fold rise in antibacterial efficacy against Staphylococcus epidermidis and Staphylococcus aureus and exhibited a permanent biocidal response after 6 h of contact-active behaviour. We investigated a 3-fold generation of reactive oxygen species as the predominant antibacterial mechanism, which diminishes bacterial integrity by inducing protein leakage (8.5-9 fold higher) and suppressing respiratory chain activity as two secondary mechanisms. All coatings with varying GO content appeared non-haemolytic (<2%) with ultra-low cytotoxicity (<29.08%) against human hepatocellular carcinoma (HepG2) and peripheral blood mononuclear cells. The degradation rate of coatings in simulated body fluid exhibited a higher stability, indicated by a lower weight loss (69-78%) and a decrease in pH values as the GO content in coatings increased from 0.05 to 0.15 wt%. Such anti-infective coating is a step forward in inhibiting bacterial colonization on SS surfaces to extend its lifespan.


Assuntos
Quitosana , Álcool de Polivinil , Humanos , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Quitosana/farmacologia , Quitosana/química , Aço Inoxidável/farmacologia , Leucócitos Mononucleares , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
4.
Biologia (Bratisl) ; 77(10): 2989-3000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814925

RESUMO

Banana sap is currently designated as a waste subsequent to utilization of pseudo stem in pulp and paper industry as well as other applications which is contributing to the environmental pollution. In the present study, banana sap and its crude extracts were evaluated for antimicrobial, antioxidant and anticancer properties. The role of oxidized and un-oxidized banana sap for its antimicrobial potential against a microbial test panel comprising gram positive as well as gram negative bacteria and Candida albicans using in vitro micro broth dilution assay. The un-oxidized banana sap exhibited a significantly higher antibacterial potential as evident by a lower minimal inhibitory concentration (MIC) ranging between 15.625 to 62.5 mg/mL. In vitro radical scavenging activity of dichloromethane (DCM) extract of banana sap by DPPH method exhibited 54.62 ± 1.09 (µg/mL) IC50 value at the concentration of 1 mg/mL. Dichloromethane extract of banana sap showed maximum cytotoxic effect with human breast cancer (MCF-7) cell proliferation at the concentration of 100 µg/mL which was 78.37 ± 0.05% and the cytotoxic effect significantly increased with increasing concentration of banana sap extract. Furthermore, LCMS studies revealed the presence of bioactive compounds in dichloromethane extract of banana sap, such as rescinnamine derivative, dihydrorescinnamine and epimedin A. The present study suggested that banana sap is a promising source of bioactive compounds with relevant antimicrobial, antioxidant and anticancer properties.

5.
AMB Express ; 12(1): 59, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587839

RESUMO

Microbially induced calcium carbonate precipitation (MICCP) is considered a novel eco-friendly technique to enhance the structural properties of cementitious-based material. Maximum studies have emphasized using ureolytic bacteria to improve the durability properties of building structures. In this study, the role of photoautotrophic bacteria Synechocystis pevalekii BDHKU 35101 has been investigated for calcium carbonate precipitation in sand consolidation, and enhancing mechanical and permeability properties of cement mortar. Both live and UV-treated S. pevalekii cells were used to treat the mortar specimens, and the results were compared with the control. The compressive strength of mortar specimens was significantly enhanced by 25.54% and 15.84% with live and UV-treated S. pevalekii cells at 28-day of curing. Water absorption levels were significantly reduced in bacterial-treated mortar specimens compared to control at 7 and 28-day curing. Calcium carbonate precipitation was higher in live-treated cells than in UV-treated S. pevalekii cells. Calcium carbonate precipitation by S. pevalekii cells was confirmed with SEM-EDS, XRD, and TGA analysis. These results suggest that S. pevalekii can serve as a low-cost and environment friendly MICCP technology to improve the durability properties of cementitious materials.

6.
3 Biotech ; 12(4): 86, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35273898

RESUMO

Microbial enzymes have gained interest for their widespread use in various industries and medicine due to their stability, ease of production, and optimization. Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. The present review illustrates promising applications of enzymes produced by endophytic fungi and discusses the characteristic features of the enzymes, application of the endophytic fungal enzymes in therapeutics, agriculture, food, and biofuel industries. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. The global market of industrially important enzymes, challenges, and future prospects are illustrated. However, the commercialization of endophytic fungal enzymes for industrial purposes is yet to be explored. The present review suggests that endophytic fungi can produce various enzymes and may become a novel source for upscaling the production of enzymes of industrial use.

7.
Comput Biol Chem ; 92: 107461, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33667975

RESUMO

Drug resistance is increasingly evolving in malaria parasites; hence, it is important to discover and establish alternative drug targets. In this context, GPI-anchor transamidase (GPI-T) is a potential drug target primarily of its crucial role in the development and survival of the parasite in the GPI anchor biosynthesis pathway. The present investigation was undertaken to explore the plausible effects of nsSNP on the structure and functions of GPI-T subunit GPI8p of Plasmodium falciparum. The GPI8p (PF3D7_1128700) was analyzed using various sequence-based and structure-based computational tools such as SIFT, PROVEAN, PredictSNP, SNAP2, I-Mutant, MuPro, ConSurf, NetSurfP, MUSTER, COACH server and STRING server. Of the 34 nsSNPs submitted for functional analysis, 18 nsSNPs (R124 L, N143 K, Y145 F, V157I, T195S, K379E, I392 K, I437 T, Y438H, N439D, Y441H, N442D, N448D, N451D, D457A, D457Y, I458 L and N460 K) were predicted to have deleterious effects on the protein GPI8p. Additionally, I-Mutant 2.0 and MuPro both showed a decrease in stability after mutation as a result of these nsSNPs, suggesting the destabilization of protein. ConSurf findings suggest that most of the regions were highly conserved. In addition, COACH server was used to predict the ligand binding sites. It was found that no mutation was present at the predicted ligand binding site. The results of the STRING database showed that the protein GPI8p interacts with those proteins which either involve the biosynthetic process of attaching GPI anchor to protein or GPI anchor. The present study suggested that the GPI8p could be a novel target for anti-malarial drugs, which provides significant details for further experimentation.


Assuntos
Aciltransferases/genética , Redes Reguladoras de Genes/genética , Plasmodium falciparum/enzimologia , Polimorfismo de Nucleotídeo Único/genética , Aciltransferases/metabolismo
8.
3 Biotech ; 11(2): 93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33520579

RESUMO

COVID-19 has emerged as a rapidly escalating serious global health issue, affecting every section of population in a detrimental way. Present situation invigorated researchers to look for potent targets, development as well as repurposing of conventional therapeutic drugs. NSP12, a RNA polymerase, is key player in viral RNA replication and, hence, viral multiplication. In our study, we have screened a battery of FDA-approved drugs against SARS-CoV-2 RNA polymerase using in silico molecular docking approach. Identification of potent inhibitors against SARS-CoV-2 NSP12 (RNA polymerase) were screeened from FDA approved drugs by virtual screening for therapeutic applications in treatment of COVID-19. In this study, virtual screening of 1749 antiviral drugs was executed using AutoDock Vina in PyRx software. Binding affinities between NSP12 and drug molecules were determined using Ligplot+ and PyMOL was used for visualization of docking between interacting residues. Screening of 1749 compounds resulted in 14 compounds that rendered high binding affinity for NSP12 target molecule. Out of 14 compounds, 5 compounds which include 3a (Paritaprevir), 3d (Glecaprevir), 3h (Velpatasvir), 3j (Remdesivir) and 3l (Ribavirin) had a binding affinity of - 10.2 kcal/mol, -9.6 kcal/mol, - 8.5 kcal/mol, - 8.0 kcal/mol and - 6.8 kcal/mol, respectively. Moreover, a number of hydrophobic interactions and hydrogen bonding between these 5 compounds and NSP12 active site were observed. Further, 3l (Ribavirin) was docked with 6M71 and molecular dynamic simulation of the complex was also performed to check the stability of the conformation. In silico analysis postulated the potential of conventional antiviral drugs in treatment of COVID-19. However, these finding may be further supported by experimental data for its possible clinical application in present scenario.

9.
Ecotoxicology ; 30(1): 67-79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159264

RESUMO

The microbiota inhabiting in metal polluted environment develops strong defense mechanisms to combat pollution and sustain life. Investigating the functional genes of the eukaryotic microbiota inhabiting in these environments by using metatranscriptomics approach was the focus of this study. Size fractionated eukaryotic cDNA libraries (library A, < 0.5 kb, library B, 0.5-1.0 kb, and library C, > 1.0 kb) were constructed from RNA isolated from the metal contaminated soil. The library C was screened for Cadmium (Cd) tolerant genes by using Cd sensitive yeast mutant ycf1Δ by functional complementation assay, which yielded various clones capable of growing in Cd amended media. One of the Cd tolerant clones, PLCg39 was selected because of its ability to grow at high concentrations of Cd. Sequence analysis of PLCg39 showed homology with DHHC palmitoyl transferases, which are responsible for addition of palmitoyl groups to proteins and usually possess metal coordination domains. The cDNA PLCg39 was able to confer tolerance to Cd-sensitive (ycf1Δ), Copper-sensitive (cup1Δ) and Zn-sensitive (zrc1Δ) yeast mutants when grown at different concentrations of Cd (40-100 µM), Cu (150-1000 µM) and Zn (10-13 mM), respectively. The DHHC mutant akr1Δ transformed with PLCg39 rescued from the metal sensitivity indicating the role of DHHC palmitoyl transferase in metal tolerance. This study demonstrated that PLCg39 acts as a potential metal tolerant gene which could be used in bioremediation, biosensing and other biotechnological fields.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transferases
10.
Physiol Mol Biol Plants ; 26(2): 367-377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158141

RESUMO

The genetic transformation of plants is an important biotechnological tool used for crop improvement for many decades. The present study was focussed to investigate various factors affecting genetic transformation of potato cultivar 'Kufri Chipsona 1'. It was observed that explants pre-cultured for 2 days on MS2 medium (MS medium containing 10 µM silver nitrate, 10 µM BA, 15 µM GA3), injured with a surgical blade and co-cultivated with Agrobacterium tumefaciens strain EHA105 [O.D600 (0.6)] for 2 days results in maximum transient ß-glucuronidase (GUS) expression. The addition of 100 µM acetosyringone in MS2 medium also increased rate of transient GUS expression in both the explants. Clumps of putative transgenic shoots were regenerated using the optimised culture conditions from leaf and internodal explants. The stable integration of T-DNA was established using histochemical staining for GUS and amplification of DNA fragment specific to nptII and uidA genes. Within the clumps, around 67.85% of shoots showed uniform GUS expression in all the tissues and about 32.15% shoots show intermittent GUS expression establishing chimeric nature. Uniform GUS staining of the tissue was used as initial marker of non-chimeric transgenic shoots. Quantitative expression of nptII transgene was found to be directly proportional to uniformity of GUS staining in transgenic shoots. The present investigation indicated that manipulation of culture conditions and the medium composition may help to get transgenic shoots with uniform expression of transgene in all the tissues of potato cultivar 'Kufri Chipsona 1'.

11.
3 Biotech ; 10(2): 71, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030340

RESUMO

Metatranscriptomics, a subset of metagenomics, provides valuable information about the whole gene expression profiling of complex microbial communities of an ecosystem. Metagenomic studies mainly focus on the genomic content and identification of microbes present within a community, while metatranscriptomics provides the diversity of the active genes within such community, their expression profile and how these levels change due to change in environmental conditions. Metatranscriptomics has been applied to different types of environments, from the study of human microbiomes, to those found in plants, animals, within soils and in aquatic systems. Metatranscriptomics, based on the utilization of mRNA isolated from environmental samples, is a suitable approach to mine the eukaryotic gene pool for genes of biotechnological relevance. Also, it is imperative to develop different bioinformatic pipelines to analyse the data obtained from metatranscriptomic analysis. In the present review, we summarise the metatranscriptomics applied to soil environments to study the functional diversity, and discuss approaches for isolating the genes involved in organic matter degradation and providing tolerance to toxic metals, role of metatranscriptomics in microbiome research, various bioinformatics pipelines used in data analysis and technical challenges for gaining biologically meaningful insight of this approach.

12.
Chemosphere ; 240: 124914, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31557642

RESUMO

Arsenic (As) contamination is one of the most daunting environmental problem bothering the whole world. Exploring a suitable bioremediation technique is an urgent need of the hour. The present study focusses on scrutinizing the ectomycorrhizal (ECM) fungus for its potential role in As detoxification and understanding the molecular mechanisms responsible for its tolerance. When exposed to increasing concentrations of external As, the ECM fungus H. cylindrosporum accumulated the metalloid intracellularly, inducing the glutathione biosynthesis pathway. The genes coding for GSH biosynthesis enzymes, γ-glutamylcysteine synthetase (Hcγ-GCS) and glutathione synthetase (HcGS) were highly regulated by As stress. Arsenic coordinately upregulated the expression of both Hcγ-GCS and HcGS genes, thus resulting in increased Hcγ-GCS and HcGS protein expressions and enzyme activities, with substantial increase in intracellular GSH. Functional complementation of the two genes (Hcγ-GCS and HcGS) in their respective yeast mutants (gsh1Δ and gsh2Δ) further validated the role of both enzymes in mitigating As toxicity. These findings clearly highlight the potential importance of GSH antioxidant defense system in regulating the As induced responses and its detoxification in ECM fungus H. cylindrosporum.


Assuntos
Arsênio/toxicidade , Glutationa/biossíntese , Hebeloma/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Arsênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Hebeloma/genética , Hebeloma/metabolismo , Inativação Metabólica , Mutação , Micorrizas/genética , Micorrizas/metabolismo , Saccharomyces cerevisiae/metabolismo , Poluentes do Solo/metabolismo
13.
Biochimie ; 160: 183-192, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30905733

RESUMO

Constant addition of heavy metal pollutants in soil resulting from anthropogenic activities can prove detrimental to both macro and micro life forms inhabiting the ecosystem. The potential functional roles of eukaryotic microbes in such environment were explored in this study by metatranscriptomics approach. Sized eukaryotic cDNA libraries, library A (<0.5 kb), library B (0.5-1.0 kb), and library C (>1 kb) were constructed from the soil RNA and screened for copper (Cu) tolerance genes by using copper sensitive yeast mutant strain cup1Δ. Screening of the cDNA libraries yielded different clones capable of growing in Cu amended medium. In the present investigation, one of the transcripts PLCc38 from the library C was characterized and tested for its ability to tolerate different heavy metals by using metal sensitive yeast mutants. Sequence analysis PLCc38 showed homology with aldehyde dehydrogenase (ALDH) and capable of tolerating high concentrations of Cu (150-1000 µM). Aldeyde dehydrogenases are stress response enzymes capable of eliminating toxic levels of aldehydes generated due to abiotic environmental stresses. The cDNA PLCc38 also provided tolerance to wide range of Cd (40-100 µM), Zn (10-13 mM) and Co (2-50 mM) concentrations. Oxidative stress tolerance potential of PLCc38 was also confirmed in presence of different concentrations of H2O2. This study proves that PLCc38 is a potent gene associated with metal tolerance which could be used to revegetate heavy metal polluted soil or as a biomarker for detection of metal contamination.


Assuntos
Aldeído Desidrogenase/metabolismo , Biodegradação Ambiental , Cobre/farmacologia , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Solo/química , Transcriptoma , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/isolamento & purificação , Sequência de Aminoácidos , Ecossistema , Perfilação da Expressão Gênica , Metais Pesados , Filogenia , Homologia de Sequência , Microbiologia do Solo , Poluentes do Solo/farmacologia
14.
Microb Pathog ; 130: 271-282, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30914386

RESUMO

Streptococcus pneumoniae is widely recognized as the main cause of bacterial pneumonia among all age groups. Other important gram-positive, gram-negative and atypical bacteria causing pneumonia majorly infect children and infants. Despite abundant occurrence of bacterial pneumonia, there is no specific antibiotic therapy available. On the other hand non-specific therapies are less effective and may influence bacterial resistance. Therefore, search for novel drug targets for pathogen is highly necessary. The current study suggested novel potential drug targets through the subtractive and comparative genomics approach. Putative drug targets were identified from highly virulent strain of Streptococcus pneumoniae using target identification (TiD) software and compared with other 12 pneumonia causing pathogens. The putative targets were prioritized through druggability analysis, virulence analysis, metabolic pathway enrichment followed by functional annotations and interactome network. Prioritization of 74 drug targets revealed that 42 of them were enzymes which included 29 new targets and seven chokepoint enzymes. Twenty (out of 74) potential targets are proposed as hub genes through interactome analysis and explored their significance in survival of the pathogen. Comparative analysis of 20 hub genes represents that 15 are enzymes and five are non-enzymes. Functional annotation of two chokepoint hub enzymes namely, peptidoglycan bridge formation alanyltransferase MurN (fibB) and PTS mannitol transporter subunit IIA (mltF) were significantly enriched in peptidoglycan biosynthesis and phosphotransferase system (PTS) respectively. Therefore these enzymes would be of prior interest for rational design of targeted therapy against bacterial pneumonia.


Assuntos
Antibacterianos/farmacologia , Biologia Computacional , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Genômica , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Streptococcus pneumoniae/genética
15.
Sci Total Environ ; 662: 462-469, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30695746

RESUMO

Red mud (RM) is a highly alkaline, saline and sodic solid by-product released by alumina industries, which pose an economical and environmental problem and establishment of vegetation on these sites is a big challenge. In the present study, a fungus RM-28 exhibiting high tolerance to alkaline (pH 12), saline/sodic (NaCl 4%) was isolated from RM flooded rhizosphere soil of bermudagrass and tested its ability to reduce RM toxicity and promote the growth of sorghum-sudangrass seedlings. This fungus also exhibited high tolerance to heavy metal(loid)s (HMs) and desirable plant growth-promoting traits. This fungus was identified as Trichoderma asperellum based on its internal transcribed spacer (ITS) of rDNA and translation elongation factor-1α (TEF 1α) gene analysis. This fungus was effective in reducing the pH and solubilizing tricalcium phosphate under high alkaline and saline conditions in vitro. Further, RM-28 inoculation significantly lowered the pH and EC of the red mud from 11.8 to 8.2 and 2.23 to 1.42, respectively. Inoculation of RM-28 significantly improved the growth, chlorophyll content and reduced the oxidative stress of sorghum-sudangrass seedlings grown in red mud leachate. These observations suggest that T. asperellum RM-28 serves as potential source for the establishment of vegetation on red mud/red mud contaminated soils.


Assuntos
Álcalis , Tolerância ao Sal , Plântula/crescimento & desenvolvimento , Poluentes do Solo/antagonistas & inibidores , Sorghum/fisiologia , Trichoderma/fisiologia , Plântula/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Sorghum/crescimento & desenvolvimento
16.
Biometals ; 32(1): 101-110, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30560539

RESUMO

Ectomycorrhizal fungi hold a potential role in bioremediation of heavy metal polluted areas because of its metal accumulation and detoxification property. We investigated the cadmium (Cd) induced bioaccumulation of glutathione (GSH) mediated by γ-glutamylcysteine synthetase (γ-GCS) in the ectomycorrhizal fungus Hebeloma cylindrosporum. In H. cylindrosporum, a demand driven synthesis of GSH has been observed in response to Cd. The expression and enzyme activity of H. cylindrosporum γ-GCS (Hcγ-GCS) increased as a function of external Cd stress resulting in increased GSH production. The function of Hcγ-GCS in providing heavy metal tolerance to H. cylindrosporum was justified by complementing the gene in gsh1Δ mutant of Saccharomyces cerevisiae. The metal sensitive mutant gsh1Δ successfully restored its metal tolerance ability when transformed with Hcγ-GCS gene. Sequence analysis of Hcγ-GCS showed homology with most of the reported γ-GCS proteins from basidiomycetes family. The active site of the Hcγ-GCS protein is composed of amino acids that were found to be conserved not only in fungi, but also in plants and mammals. From these results, it was concluded that Hcγ-GCS plays an important role in bioaccumulation of GSH, which is a core component in the mycorrhizal defense system under Cd stress for Cd homeostasis and detoxification.


Assuntos
Cádmio/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Hebeloma/efeitos dos fármacos , Hebeloma/metabolismo , Glutamato-Cisteína Ligase/genética , Hebeloma/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
17.
J Fungi (Basel) ; 4(3)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149584

RESUMO

Cancer is the second leading cause of death worldwide, and the number of cases is increasing alarmingly every year. Current research focuses on the development of novel chemotherapeutic drugs derived from natural as well as synthetic sources. The abundance and diversity in natural resources offer tremendous potential for the discovery of novel molecules with unique mechanisms for cancer therapy. Mangrove-derived fungi are rich source of novel metabolites, comprising novel structure classes with diverse biological activities. Across the globe, coastal areas are primarily dominated by mangrove forests, which offer an intensely complex environment and species that mostly remain unexplored. In recent years, many structurally diverse compounds with unique skeletons have been identified from mangrove fungi and evaluated for their antiproliferative properties. These compounds may serve as lead molecules for the development of new anticancer drugs. Mangrove endophytes can be modulated using epigenetic means or culture optimization methods to improve the yield or to produce various similar analogs. The present review provides an insight into the bioactive metabolites from mangrove endophytes reported during the period from 2012 to 2018 (up to April, 2018) along with their cytotoxic properties, focusing on their chemical structures and mode of action, as indicated in the literature.

18.
J Ind Microbiol Biotechnol ; 45(8): 657-667, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29808291

RESUMO

Microbial-induced carbonate precipitation (MICP) has a potential to improve the durability properties and remediate cracks in concrete. In the present study, the main emphasis is placed upon replacing the expensive laboratory nutrient broth (NB) with corn steep liquor (CSL), an industrial by-product, as an alternate nutrient medium during biocementation. The influence of organic nutrients (carbon and nitrogen content) of CSL and NB on the chemical and structural properties of concrete structures is studied. It has been observed that cement-setting properties were unaffected by CSL organic content, while NB medium influenced it. Carbon and nitrogen content in concrete structures was significantly lower in CSL-treated specimens than in NB-treated specimens. Decreased permeability and increased compressive strength were reported when NB is replaced with CSL in bacteria-treated specimens. The present study results suggest that CSL can be used as a replacement growth medium for MICP technology at commercial scale.


Assuntos
Carbono/química , Materiais de Construção/microbiologia , Nitrogênio/química , Nutrientes/química , Amido/química , Zea mays/química , Bactérias , Força Compressiva , Meios de Cultura , Teste de Materiais , Microscopia Eletrônica de Varredura , Permeabilidade , Temperatura , Difração de Raios X
19.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773620

RESUMO

Here, we report the draft de novo genome sequence assembly of Fusarium tricinctum (strain T6), using IonTorrent sequencing chemistry and an Ion 530 chip ExT kit for sequencing. The genome assembly resulted in 42,732,204 bp from a total 6.62 Gb, with a median read length of 386 bp.

20.
J Ind Microbiol Biotechnol ; 44(11): 1511-1525, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28900729

RESUMO

Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.


Assuntos
Carbonato de Cálcio/química , Materiais de Construção/microbiologia , Bacillus/metabolismo , Precipitação Química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA