Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20637, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420454

RESUMO

Abstract Neuropathic pain (NP) affects more than 8% of the global population. The proposed action of the transient receptor potential ankyrin 1 (TRPA1) as a mechanosensor and the characterization of the transient receptor potential melastatin 8 (TRPM8) as a cold thermosensor raises the question of whether these receptors are implicated in NP. Our study aimed to evaluate the involvement of TRPA1 and TRPM8 in cold and mechanical signal transduction to obtain a comparative view in rat models of streptozotocin-induced diabetes (STZ) and chronic constriction injury of the sciatic nerve (CCI). The electronic von Frey test showed that STZ rats presented mechanical allodynia that was first evidenced on the 14th day after diabetes confirmation, and four days after CCI. This phenomenon was reduced by the intraplantar (ipl) administration of a TRPA1 receptor antagonist (HC-030031; 40 µL/300 µg/paw) in both NP models. Only CCI rats displayed cold hyperalgesia based on the cold plate test. The pharmacological blocking of TRPA1 through the injection of the antagonist attenuated cold hyperalgesia in this NP model. STZ animals showed a reduction in the number of flinches induced by the intraplantar injection of mustard oil (MO; TRPA1 agonist; 0.1%/50 µL/paw), or intraplantar injection of menthol (MT; TRPM8 agonist; 0.5% and 1%/50 µL/paw). The response induced by the ipl administration of MT (1%/50 µL/paw) was significantly different between the CCI and SHAM groups. Together, these data suggest a different pattern in nociceptive behavior associated with different models of NP, suggesting a variant involvement of TRPA1 and TRPM8 in both conditions


Assuntos
Animais , Masculino , Ratos , Estudo Comparativo , Hiperalgesia/patologia , Nervo Isquiático/anormalidades , Anquirinas/agonistas , Diabetes Mellitus/patologia
2.
Brain Res ; 1715: 156-164, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898678

RESUMO

Most diabetic patients describe moderate to severe pain symptoms whose pharmacological treatment is palliative and poorly effective. Cannabidiol (CBD) has shown promising results in painful conditions. Then, we aimed to investigate the potential antinociceptive effect of CBD over the mechanical allodynia in streptozotocin-induced diabetic (DBT) rats, as well as its involved mechanisms. Wistar adult male diabetic rats were treated acutely or sub-chronically (for 14 days) with CBD (0.1, 0.3 or 3 mg/kg, intraperitoneal; i.p.) and had their mechanical threshold assessed using the electronic Von Frey. Acute treatment with CBD (at doses of 0.3 and 3 mg/kg) exerted a significant anti-allodynic effect, which is not associated with locomotor impairment. The antinociceptive effect of CBD (3 mg/kg) was not altered by the pre-treatment with CB1 or CB2 receptor antagonists (AM251 and AM630; respectively; both at a dose of 1 mg/kg, i.p.) nor by glycine receptor antagonist (strychnine hydrochloride, 10 µg/rat, intrathecal, i.t.). However, this effect was completely prevented by the pre-treatment with the selective 5-HT1A receptor antagonist WAY 100135 (3 µg/rat, i.t.). Sub-chronic treatment with CBD (0.3 or 3 mg/kg) induced a sustained attenuation of the mechanical allodynia in DBT rats. DBT rats presented significantly lower spinal cord levels of serotonin, which was prevented by the daily treatment with CBD (0.3 mg/kg). Taken together, our data suggest that CBD may be effective in the treatment of painful diabetic neuropathy and this effect seems to be potentially mediated by the serotonergic system activation through 5-HT1A receptors.


Assuntos
Canabidiol/farmacologia , Hiperalgesia/tratamento farmacológico , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Animais , Canabidiol/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Piperazinas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA