Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood Purif ; 52(1): 25-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35526522

RESUMO

INTRODUCTION: The Seraph® 100 Microbind® Affinity Blood Filter (Seraph 100) is a hemoperfusion device that can remove pathogens from central circulation. However, the effect of Seraph 100 on achieving pharmacodynamic (PD) targets is not well described. We sought to determine the impact of Seraph 100 on ability to achieve PD targets for commonly used antibiotics. METHODS: Estimates of Seraph 100 antibiotic clearance were obtained via literature. For vancomycin and gentamicin, published pharmacokinetic models were used to explore the effect of Seraph 100 on ability to achieve probability of target attainment (PTA). For meropenem and imipenem, the reported effect of continuous kidney replacement therapy (CKRT) on achieving PTA was used to extrapolate decisions for Seraph 100. RESULTS: Seraph 100 antibiotic clearance is likely less than 0.5 L/h for most antibiotics. Theoretical Seraph 100 clearance up to 0.5 L/h and 2 L/h had a negligible effect on vancomycin PTA in virtual patients with creatinine clearance (CrCl) = 14 mL/min and CrCl >14 mL/min, respectively. Theoretical Seraph 100 clearance up to 0.5 L/h and 2 L/h had a negligible effect on gentamicin PTA in virtual patients with CrCl = 120 mL/min and CrCl <60 mL/min, respectively. CKRT intensity resulting in antibiotic clearance up to 2 L/h generally does not require dose increases for meropenem or imipenem. As Seraph 100 is prescribed intermittently and likely contributes far less to antibiotic clearance, dose increases would also not be required. CONCLUSION: Seraph 100 clearance of vancomycin, gentamicin, meropenem, and imipenem is likely clinically insignificant. There is insufficient evidence to recommend increased doses. For aminoglycosides, we recommend extended interval dosing and initiating Seraph 100 at least 30 min to 1 h after completion of infusion to avoid the possibility of interference with maximum concentrations.


Assuntos
Antibacterianos , Hemoperfusão , Humanos , Antibacterianos/uso terapêutico , Meropeném , Vancomicina/farmacologia , Imipenem , Gentamicinas/farmacologia , Estado Terminal/terapia
3.
Insect Biochem Mol Biol ; 65: 57-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164413

RESUMO

Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are serving important functions worthy of further study.


Assuntos
Anopheles/química , Proteínas de Artrópodes/metabolismo , Crustáceos/metabolismo , Epiderme/metabolismo , Insetos/metabolismo , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Anopheles/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Crustáceos/química , Crustáceos/genética , Epiderme/química , Insetos/química , Insetos/genética , Larva/metabolismo , Muda , Ninfa/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo
4.
Parasit Vectors ; 7: 24, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24428871

RESUMO

BACKGROUND: Published data revealed that two of the 243 structural cuticular proteins of Anopheles gambiae, CPLCG3 and CPLCG4, are implicated in insecticide resistance and a third, CPF3, has far higher transcript levels in M than in S incipient species. We studied the distribution of transcripts for these three genes in the tissues of An. gambiae and the location of the proteins in the cuticle itself to gain information about how these cuticular proteins contribute to their important roles. Our data are consistent with CPLCG3/4 contributing to a thicker cuticle thus slowing penetration of insecticides and CPF3 possibly having a role in the greater desiccation tolerance of the M form. METHODS: Using RT-qPCR, we established the temporal expression of the genes and by in situ hybridization we revealed the main tissues where their mRNAs are found. Electron microscopy immunolocalization, using secondary antibodies labeled with colloidal gold, allowed us to localize these proteins within different regions of the cuticle. RESULTS: The temporal expression of these genes overlaps, albeit with higher levels of transcripts from CPF3 in pharate adults and both CPLCG3 and CPLCG4 are higher in animals immediately after adult eclosion. The main location of mRNAs for all three genes is in appendages and genitalia. In contrast, the location of their proteins within the cuticle is completely different. CPF3 is found exclusively in exocuticle and CPLCG3/4 is restricted to the endocuticle. The other CPF gene expressed at the same times, CPF4, in addition to appendages, has message in pharate adult sclerites. CONCLUSIONS: The temporal and spatial differences in transcript abundance and protein localization help to account for An. gambiae devoting about 2% of its protein coding genes to structural cuticular proteins. The location of CPLCG3/4 in the endocuticle may contribute to the thickness of the cuticle, one of the recently appreciated components of insecticide resistance, while the location of CPF3 might be related to the greater desiccation resistance of the M form.


Assuntos
Anopheles/genética , Regulação da Expressão Gênica , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Sequência de Aminoácidos , Animais , Anopheles/metabolismo , Anopheles/ultraestrutura , Western Blotting , Feminino , Imuno-Histoquímica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Transcrição Gênica
5.
Insect Biochem Mol Biol ; 44: 33-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269292

RESUMO

Numerous studies have examined changes in transcript levels after Anopheles gambiae takes a blood meal. Marinotti et al. (2006) used microarrays and reported massive changes in transcript levels 3 h after feeding (BF3h) compared to non-blood fed (NBF). We were intrigued by the number of transcripts for structural cuticular proteins (CPs) that showed such major differences in levels and employed paired-end (50 bp) RNA-seq technology to compare whole body transcriptomes from 5-day-old females NBF and BF3h. We detected transcripts for the majority of CPs (164/243) but levels of only 12 were significantly altered by the blood meal. While relative transcript levels of NBF females were somewhat similar to the microarray data, there were major differences in BF3h animals, resulting in levels of many transcripts, both for CPs and other genes changing in the opposite direction. We compared our data also to other studies done with both microarrays and RNA-seq. Findings were consistent that a small number of CP genes have transcripts that persist even in 5-day-old adults. Some of these transcripts showed diurnal rhythms (Rund et al., 2013; Rinker et al., 2013). In situ hybridization revealed that transcripts for several of these CP genes were found exclusively or predominantly in the eye. Transcripts other than for CPs that changed in response to blood-feeding were predominantly expressed in midgut and Malpighian tubules. Even in these tissues, genes responsible for proteins with similar functions, such as immunity or digestion, responded differently, with transcript levels for some rising and others falling. These data demonstrate that genes coding for some CPs are dynamic in expression even in adults and that the response to a blood meal is rapid and precisely orchestrated.


Assuntos
Anopheles/genética , Perfilação da Expressão Gênica , Mordeduras e Picadas de Insetos/parasitologia , Proteínas de Insetos/genética , Animais , Anopheles/fisiologia , Feminino , Humanos , Mordeduras e Picadas de Insetos/sangue , Proteínas de Insetos/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos
6.
Mol Cancer Ther ; 8(4): 904-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19372563

RESUMO

Guided by a combination of nuclear magnetic resonance binding assays and computational docking studies, we synthesized a library of 5,5' substituted Apogossypol derivatives as potent Bcl-XL antagonists. Each compound was subsequently tested for its ability to inhibit Bcl-XL in an in vitro fluorescence polarization competition assay and exert single-agent proapoptotic activity in human cancer cell lines. The most potent compound BI79D10 binds to Bcl-XL, Bcl-2, and Mcl-1 with IC50 values of 190, 360, and 520 nmol/L, respectively, and potently inhibits cell growth in the H460 human lung cancer cell line with an EC50 value of 680 nmol/L, expressing high levels of Bcl-2. BI79D10 also effectively induces apoptosis of the RS11846 human lymphoma cell line in a dose-dependent manner and shows little cytotoxicity against bax-/-bak-/- mouse embryonic fibroblast cells, in which antiapoptotic Bcl-2 family proteins lack a cytoprotective phenotype, implying that BI79D10 has little off-target effects. BI79D10 displays in vivo efficacy in transgenic mice, in which Bcl-2 is overexpressed in splenic B cells. Together with its improved plasma and microsomal stability relative to Apogossypol, BI79D10 represents a lead compound for the development of novel apoptosis-based therapies for cancer.


Assuntos
Gossipol/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Linfoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular/efeitos dos fármacos , Feminino , Polarização de Fluorescência , Gossipol/síntese química , Gossipol/química , Gossipol/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfoma/metabolismo , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Membranas Artificiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Microssomos Hepáticos , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Células Tumorais Cultivadas , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/fisiologia , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA