Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Rehabil Res Clin Transl ; 6(1): 100318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482110

RESUMO

Objective: The purpose of this investigation was to explore if a physical therapy program involving strength, flexibility, balance, and walking can improve the uncharacteristic gait variability and overall mobility of persons living with multiple sclerosis (pwMS). Design: Pre-post design to evaluate the mobility improvements after undergoing 6 weeks of a gait and balance physical therapy intervention. Setting: The initial 2 weeks were conducted at a medical center under close supervision of a physical therapist. The remaining 4 weeks were performed by the patient at their home and monitored via teleconferences. Participants: Fifteen pwMS with relapsing-remitting (N=11) or secondary progressive multiple sclerosis (N=4) were enrolled in this study (7 women; mean age: 54.8±9 years; Kurtzke Expanded Disability Status Score range: 3.0-6.5). A group of healthy age-matched controls (N=15) were used for comparisons. Interventions: The 6-week physical therapy intervention included exercises that targeted strength, flexibility, balance, and walking. The initial 2 weeks of the intervention were performed on-site with the remaining 4 weeks home-based. The therapy was performed twice-a-day for 5 consecutive days each week. Each session was 45 minutes in length. Main Outcome Measures: Preferred walking speed, spatiotemporal gait kinematics, and a 6-minute walk test were completed before and after therapy. The standard deviation (SD) and sample entropy were used to evaluate the amount of variability and the regularity of the time-dependent variations in the center of mass (COM) accelerations during the 6-minute walk test. Results: Before the intervention, the SD of the COM was reduced, and the time-dependent variations were less regular in the pwMS than the control group. After therapy, the SD was 12% larger, and the time-dependent variations were more 7% regular in the pwMS. The effect size for these changes were large (0.91 and 0.94, respectively), suggesting these changes were meaningful. The changes in the regularity of the COM were related to the mobility improvements in the preferred walking velocity and 6-minute walk test. Conclusions: The results suggest that pwMS have altered COM variability during gait, which can be improved with a similar physical therapy program. These changes appear to be linked with the extent of the mobility improvements.

2.
Arch Rehabil Res Clin Transl ; 4(1): 100180, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35282149

RESUMO

Objective: To utilize magnetoencephalographic (MEG) brain imaging to examine potential changes in sensorimotor cortical oscillations after therapeutic power training in individuals with cerebral palsy (CP). Design: Cohort. Setting: Academic medical center. Participants: Individuals with CP (N=11; age=15.9±1.1 years; Gross Motor Function Classification System I- III) and neurotypical controls (NTs; N=16; age=14.6±0.8 years). Interventions: Participants with CP underwent 24 (8 weeks; 3 days a week) sessions of high-velocity lower extremity power training on a leg press. The NTs underwent single baseline MEG assessments. Main Outcome Measures: Pre-post bilateral leg press 1-repetition maximum and peak power production were used to assess the muscular performance changes. The 10-m walk and 1-minute walk tests were used to assess mobility changes. During MEG recordings, participants used their right leg to complete a goal-directed isometric target-matching task. Advanced beamforming methods were subsequently used to image the strength of the sensorimotor beta oscillatory power. Results: Before the therapeutic power training, the participants with CP had stronger beta sensorimotor cortical oscillations compared with the NT controls. However, the beta sensorimotor cortical oscillations were weaker and approximated the controls after the participants with CP completed the therapeutic power training protocol. There also was a link between the amount of improvement in leg peak power production and the amount of reduction in sensorimotor cortical oscillations seen after therapy. Conclusions: Therapeutic power training appears to optimize the sensorimotor cortical oscillations of individuals with CP, and these neuroplastic changes partly contribute to improvements in the leg peak power production of individuals with CP. Therapeutic power training might provide the key ingredients for beneficial neuroplastic change.

3.
Ann Clin Transl Neurol ; 9(5): 659-668, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297546

RESUMO

OBJECTIVE: Our prior magnetoencephalographic (MEG) investigations demonstrate that persons with cerebral palsy (CP) have weaker somatosensory cortical activity than neurotypical (NT) controls, which is associated with reduced muscular strength and mobility. Power training can improve lower extremity isokinetic strength, muscular power, and walking performance of youth with CP. Potentially, these clinically relevant improvements are partially driven by changes in somatosensory processing. The objective of this investigation was to determine if power training has complementary changes in muscular function and somatosensory cortical activity in youth with CP. METHODS: A cohort of youth with CP (N = 11; age = 15.90 ± 1.1 years) and NT controls (N = 10; Age = 15.93 ± 2.48 years) participated in this investigation. Youth with CP underwent 24 power training sessions. Pre-post bilateral leg press 1-repetition maximum (1RM), peak power production, 10-m walking speed, and distance walked 1-min were used as outcome measures. MEG neuroimaging assessed the changes in somatosensory cortical activity while at rest. NT controls only underwent a baseline MEG assessment. RESULTS: Youth with CP had a 56% increase in 1RM (p < 0.001), a 33% increase in peak power production (p = 0.019), and a 4% improvement in 1-min walk (p = 0.029). Notably, there was a 46% increase in somatosensory cortical activity (p = 0.02). INTERPRETATION: These results are the first to show that power training is associated with improvements in muscular function, walking performance, and the resting somatosensory cortical activity in individuals with CP. This treatment approach might be advantageous due to the potential to promote cortical and muscular plasticity, which appear to have carryover effects for improved walking performance.


Assuntos
Paralisia Cerebral , Adolescente , Paralisia Cerebral/complicações , Terapia por Exercício/métodos , Humanos , Magnetoencefalografia , Córtex Somatossensorial , Caminhada
5.
Arch Phys Med Rehabil ; 97(12): 2095-2101.e3, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27373745

RESUMO

OBJECTIVE: To evaluate the mobility and postural balance improvements that could be achieved in a cohort of persons with multiple sclerosis (MS) who participated in a motor adaptation protocol and a cohort of persons with MS who participated in a therapeutic exercise protocol. DESIGN: A cohort design, where subjects were evaluated before and after a 6-week intervention period. SETTING: Clinical laboratory setting. PARTICIPANTS: Individuals (N=42) with relapsing-remitting or secondary progressive MS (Expanded Disability Status Scale [EDSS] scores, 3.0-6.5) were initially screened for eligibility for participation in the study, from which those who fit the inclusion criteria (n=32) were enrolled in the study. Subjects were pseudorandomly assigned to a treatment group and matched based on EDSS scores. Fourteen individuals in the motor adaptation cohort (MAC) (mean age ± SD, 52.6±9y; mean EDSS score ± SD, 5.5±0.9) and 13 individuals in the therapeutic exercise cohort (TEC) (mean age ± SD, 54.0±9y; mean EDSS score ± SD, 5.3±0.9) completed the entire duration of their respective programs. INTERVENTIONS: Both cohorts completed their therapy twice a day, 5 days each week, for 6 weeks. Each session of the MAC program consisted of balance and gait training that encouraged new ways to adapt to challenging task demands. The TEC program was similar to a traditional exercise program. MAIN OUTCOME MEASURES: The Sensory Organization Test, 6-minute walk test, and gait spatiotemporal kinematics. RESULTS: Collectively, both treatment groups had improvements in postural balance (P=.001), walking endurance (P=.002), walking speed (P=.004), and step length (P<.001) after therapy. However, there were no statistical differences between the 2 treatment groups for any of the outcome variables (P values >.01). CONCLUSIONS: Our exploratory results suggest that a high frequency of physical therapy rather than a specific activity focus might be an important parameter for persons with MS.


Assuntos
Esclerose Múltipla/reabilitação , Modalidades de Fisioterapia , Equilíbrio Postural/fisiologia , Caminhada , Adulto , Idoso , Avaliação da Deficiência , Pessoas com Deficiência/reabilitação , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente , Estudos Prospectivos , Método Simples-Cego
6.
J Neurol Phys Ther ; 39(4): 225-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26247511

RESUMO

BACKGROUND AND PURPOSE: The neuromuscular impairments seen in the ankle plantarflexors have been identified as a primary factor that limits the mobility and standing postural balance of individuals with multiple sclerosis (MS). However, few efforts have been made to find effective treatment strategies that will improve the ankle plantarflexor control. Our objective was to determine whether an intensive 14-week neurorehabilitation protocol has the potential to improve the ankle plantarflexor control of individuals with MS. The secondary objectives were to determine whether the protocol would also improve postural control, plantarflexion strength, and mobility. METHODS: Fifteen individuals with MS participated in a 14-week neurorehabilitation protocol, and 20 healthy adults served as a comparison group. The primary measure was the amount of variability in the submaximal steady-state isometric torque, which assessed plantarflexor control. Secondary measures were the Sensory Organization Test composite score, maximum plantarflexion torque, and the spatiotemporal gait kinematics. RESULTS: There was less variability in the plantarflexion torques after the neurorehabilitation protocol (preintervention, 4.15% ± 0.5%; postintervention, 2.27% ± 0.3%). In addition, there were less postural sway (preintervention, 51.87 ± 0.2 points; postintervention, 67.8 ± 0.5 points), greater plantarflexion strength (preintervention, 0.46 ± 0.04 Nm/kg; postintervention, 0.57 ± 0.05 Nm/kg), and faster walking speeds (preferred preintervention, 0.71 ± 0.05 m/s; preferred postintervention, 0.81 ± 0.05 m/s; fast-as-possible preintervention, 0.95 ± 0.06 m/s; postintervention, 1.11 ± 0.07 m/s). All of the outcome variables matched or trended toward those seen in the controls. DISCUSSION AND CONCLUSIONS: The outcomes of this exploratory study suggest that the neurorehabilitation protocol employed in this investigation has the potential to promote clinically relevant improvements in the ankle plantarflexor control, standing postural balance, ankle plantarflexion strength, and the mobility of individuals with MS. Video abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A110).


Assuntos
Tornozelo/fisiopatologia , Esclerose Múltipla/reabilitação , Músculo Esquelético/fisiopatologia , Reabilitação Neurológica/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Limitação da Mobilidade , Esclerose Múltipla/fisiopatologia , Músculo Esquelético/inervação , Equilíbrio Postural/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA