Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(45): 13472-13480, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29048903

RESUMO

The application of synthetic organic chemistry to the surface chemistry of monolayer arrays adds a novel dimension to the power of these systems for surface modification. This paper describes the elaboration of simple functionalized monolayers into dialdimine and dialdiminate ligands tethered to the monolayer surface. These ligands are then used to coordinate metal ions in an effort to form diiminate complexes with control over their environment and orientation. Ligand anchoring is best achieved through either thiol-ene photochemistry or azide-acetylene "click" chemistry. There is an influence of ligand bulk on some surface transformations, and in some cases reactions that have been reported to be effective on simple, homogeneous monolayer surfaces are not applicable to a more complex monolayer environment. The large excess of solution reagents relative to monolayer surface functionality adds another measure of difficulty to the control of interfacial reactions. In instances where the anchoring chain includes functional groups that can directly interact with metal ions, the metalation of ligand-bearing surfaces resulted in a higher metal ion content than would have been expected from binding only to the diimine ligands.

2.
Inorg Chem ; 56(3): 1019-1022, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067506

RESUMO

The addition of (trimethylsilyl)diazomethane and its conjugate base to iron ß-diketiminate precursors gives novel dinuclear complexes in which the bridges are either diazomethane derivatives or an alkylidene. One product is an unusual bridging alkylidene complex containing two three-coordinate iron(II) centers. On the other hand, syntheses using the deprotonated diazomethane give two bridging diazomethyl species with binding modes that have not been observed in iron complexes previously. In the presence of a coordinating tetrahydrofuran solvent, a diiron(II) compound with µ-N bridges rearranges to a more stable isomer with µ-N,C bridges, a process that is accompanied by a 1,3-shift of a silyl group.

3.
Proc Natl Acad Sci U S A ; 113(45): 12703-12708, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791189

RESUMO

The sulfur-containing nucleosides in transfer RNA (tRNAs) are present in all three domains of life; they have critical functions for accurate and efficient translation, such as tRNA structure stabilization and proper codon recognition. The tRNA modification enzymes ThiI (in bacteria and archaea) and Ncs6 (in archaea and eukaryotic cytosols) catalyze the formation of 4-thiouridine (s4U) and 2-thiouridine (s2U), respectively. The ThiI homologs were proposed to transfer sulfur via cysteine persulfide enzyme adducts, whereas the reaction mechanism of Ncs6 remains unknown. Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] cluster that is essential for its tRNA thiolation activity. Furthermore, the archaeal and eukaryotic Ncs6 homologs as well as phosphoseryl-tRNA (Sep-tRNA):Cys-tRNA synthase (SepCysS), which catalyzes the Sep-tRNA to Cys-tRNA conversion in methanogens, also possess a [3Fe-4S] cluster similar to the methanogenic archaeal ThiI. These results suggest that the diverse tRNA thiolation processes in archaea and eukaryotic cytosols share a common mechanism dependent on a [3Fe-4S] cluster for sulfur transfer.

4.
J Biol Inorg Chem ; 20(5): 875-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26044124

RESUMO

Synthetic [2Fe-2S] clusters are often used to elucidate ligand effects on the reduction potentials and spectroscopy of natural electron-transfer sites, which can have anionic Cys ligands or neutral His ligands. Current synthetic routes to [2Fe-2S] clusters are limited in their feasibility with a range of supporting ligands. Here, we report a new synthetic route to synthetic [2Fe-2S] clusters, through oxidation of an iron(I) source with elemental sulfur. This method yields a neutral diketiminate-supported [2Fe-2S] cluster in the diiron(III)-oxidized form. The oxidized [2Fe-2S] cluster can be reduced to a mixed valent iron(II)-iron(III) compound. Both the diferric and reduced mixed valent clusters are characterized using X-ray crystallography, Mössbauer spectroscopy, EPR spectroscopy and cyclic voltammetry. The reduced compound is particularly interesting because its X-ray crystal structure shows a difference in Fe-S bond lengths to one of the iron atoms, consistent with valence localization. The valence localization is also evident from Mössbauer spectroscopy.


Assuntos
Compostos de Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Compostos de Ferro/síntese química , Compostos de Ferro/química , Proteínas Ferro-Enxofre/síntese química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA