Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37435805

RESUMO

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca2+-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca2+ binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca2+ binding and myristoylation independently affect the conformation and functions of human CHP3. Ca2+ binding increased local flexibility and hydrophobicity of CHP3 indicative of an open conformation. The Ca2+-bound CHP3 exhibited a higher affinity for NHE1 and associated stronger with lipid membranes compared to the Mg2+-bound CHP3, which adopted a closed conformation. Myristoylation enhanced the local flexibility of CHP3 and decreased its affinity to NHE1 independently of the bound ion, but did not affect its binding to lipid membranes. The data exclude the proposed Ca2+-myristoyl switch for CHP3. Instead, a Ca2+-independent exposure of the myristoyl moiety is induced by binding of the target peptide to CHP3 enhancing its association to lipid membranes. We name this novel regulatory mechanism 'target-myristoyl switch'. Collectively, the interplay of Ca2+ binding, myristoylation, and target binding allows for a context-specific regulation of CHP3 functions.


Assuntos
Calcineurina , Proteínas de Ligação ao Cálcio , Humanos , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Conformação Molecular , Prótons , Lipídeos , Cálcio/metabolismo , Ligação Proteica , Conformação Proteica
2.
Med Klin Intensivmed Notfmed ; 118(2): 125-131, 2023 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-35267045

RESUMO

BACKGROUND: Time-series forecasting models play a central role in guiding intensive care coronavirus disease 2019 (COVID-19) bed capacity in a pandemic. A key predictor of future intensive care unit (ICU) COVID-19 bed occupancy is the number of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general population, which in turn is highly associated with week-to-week variability, reporting delays, regional differences, number of unknown cases, time-dependent infection rates, vaccinations, SARS-CoV­2 virus variants, and nonpharmaceutical containment measures. Furthermore, current and also future COVID ICU occupancy is significantly influenced by ICU discharge and mortality rates. METHODS: Both the number of new SARS-CoV­2 infections in the general population and intensive care COVID-19 bed occupancy rates are recorded in Germany. These data are statistically analyzed on a daily basis using epidemic SEIR (susceptible, exposed, infection, recovered) models using ordinary differential equations and multiple regression models. RESULTS: Forecast results of the immediate trend (20-day forecast) of ICU occupancy by COVID-19 patients are made available to decision makers at various levels throughout the country. CONCLUSION: The forecasts are compared with the development of available ICU bed capacities in order to identify capacity limitations at an early stage and to enable short-term solutions to be made, such as supraregional transfers.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Cuidados Críticos , Alemanha
3.
BMC Med Res Methodol ; 22(1): 116, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443607

RESUMO

BACKGROUND: The COVID-19 pandemic has led to a high interest in mathematical models describing and predicting the diverse aspects and implications of the virus outbreak. Model results represent an important part of the information base for the decision process on different administrative levels. The Robert-Koch-Institute (RKI) initiated a project whose main goal is to predict COVID-19-specific occupation of beds in intensive care units: Steuerungs-Prognose von Intensivmedizinischen COVID-19 Kapazitäten (SPoCK). The incidence of COVID-19 cases is a crucial predictor for this occupation. METHODS: We developed a model based on ordinary differential equations for the COVID-19 spread with a time-dependent infection rate described by a spline. Furthermore, the model explicitly accounts for weekday-specific reporting and adjusts for reporting delay. The model is calibrated in a purely data-driven manner by a maximum likelihood approach. Uncertainties are evaluated using the profile likelihood method. The uncertainty about the appropriate modeling assumptions can be accounted for by including and merging results of different modelling approaches. The analysis uses data from Germany describing the COVID-19 spread from early 2020 until March 31st, 2021. RESULTS: The model is calibrated based on incident cases on a daily basis and provides daily predictions of incident COVID-19 cases for the upcoming three weeks including uncertainty estimates for Germany and its subregions. Derived quantities such as cumulative counts and 7-day incidences with corresponding uncertainties can be computed. The estimation of the time-dependent infection rate leads to an estimated reproduction factor that is oscillating around one. Data-driven estimation of the dark figure purely from incident cases is not feasible. CONCLUSIONS: We successfully implemented a procedure to forecast near future COVID-19 incidences for diverse subregions in Germany which are made available to various decision makers via an interactive web application. Results of the incidence modeling are also used as a predictor for forecasting the need of intensive care units.


Assuntos
COVID-19 , COVID-19/epidemiologia , Tomada de Decisões , Previsões , Alemanha/epidemiologia , Humanos , Funções Verossimilhança , Pandemias , SARS-CoV-2
4.
PLoS Comput Biol ; 17(1): e1008646, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497393

RESUMO

Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been-so far-no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.


Assuntos
Linguagens de Programação , Biologia de Sistemas/métodos , Algoritmos , Bases de Dados Factuais , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA