Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Microsc Microanal ; 29(Supplement_1): 1608-1609, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613837
3.
Microsc Microanal ; 29(Supplement_1): 1851-1852, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613897
4.
Sci Adv ; 9(28): eadg5135, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436993

RESUMO

The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these "chemical fingerprints" to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.

5.
Nano Lett ; 21(24): 10172-10177, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34865498

RESUMO

With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the "electron wind" has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical "wind force" model and to new opportunities for optimizing electromigration-resistant IC design.


Assuntos
Elétrons
6.
Ultramicroscopy ; 222: 113198, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33482467

RESUMO

Total electron yield (TEY) imaging is an established scanning transmission X-ray microscopy (STXM) technique that gives varying contrast based on a sample's geometry, elemental composition, and electrical conductivity. However, the TEY-STXM signal is determined solely by the electrons that the beam ejects from the sample. A related technique, X-ray beam-induced current (XBIC) imaging, is sensitive to electrons and holes independently, but requires electric fields in the sample. Here we report that multi-electrode devices can be wired to produce differential electron yield (DEY) contrast, which is also independently sensitive to electrons and holes, but does not require an electric field. Depending on whether the region illuminated by the focused STXM beam is better connected to one electrode or another, the DEY-STXM contrast changes sign. DEY-STXM images thus provide a vivid map of a device's connectivity landscape, which can be key to understanding device function and failure. To demonstrate an application in the area of failure analysis, we image a 100 nm, lithographically-defined aluminum nanowire that has failed after being stressed with a large current density.

7.
ACS Nano ; 14(9): 11510-11517, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790350

RESUMO

More efficient thermoelectric devices would revolutionize refrigeration and energy production, and low-dimensional thermoelectric materials are predicted to be more efficient than their bulk counterparts. But nanoscale thermoelectric devices generate thermal gradients on length scales that are too small to resolve with traditional thermometry methods. Here we fabricate, using single-crystal bismuth telluride (Bi2Te3) and antimony/bismuth telluride (Sb2-xBixTe3) flakes exfoliated from commercially available bulk materials, functional thermoelectric coolers (TECs) that are only 100 nm thick. These devices are the smallest TECs ever demonstrated by a factor of 104. After depositing indium nanoparticles to serve as nanothermometers, we measure the heating and cooling produced by the devices with plasmon energy expansion thermometry (PEET), a high-spatial-resolution, transmission electron microscopy (TEM)-based thermometry technique, demonstrating a ΔT = -21 ± 4 K from room temperature. We also establish proof-of-concept for condensation thermometry, a quantitative temperature-change mapping technique with a spatial precision of ≲300 nm.

8.
J Power Sources ; 4362019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31824126

RESUMO

Charging a commercial lithium-ion battery intercalates lithium into the graphite-based anode, creating various lithium carbide structures. Despite their economic importance, these structures and the dynamics of their charging-discharging transitions are not well-understood. We have videoed single microcrystals of high-quality, natural graphite undergoing multiple lithiation-delithiation cycles. Because the equilibrium lithium-carbide compounds corresponding to full, half, and one-third charge are gold, red, and blue respectively, video observations give direct insight into both the macromolecular structures and the kinematics of charging and discharging. We find that the transport during the first lithiation is slow and orderly, and follows the core-shell or shrinking annuli model with phase boundaries moving at constant velocities (i.e. non-diffusively). Subsequent lithiations are markedly different, showing transport that is both faster and disorderly, which indicates that the initially pristine graphite is irreversibly and considerably altered during the first cycle. In all cases deintercalation is not the time-reverse of intercalation. These findings both illustrate how lithium enters nearly defect-free host material, and highlight the differences between the idealized case and an actual, cycling graphite anode.

9.
Ultramicroscopy ; 207: 112852, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678644

RESUMO

An electron microscope's primary beam simultaneously ejects secondary electrons (SEs) from the sample and generates electron beam-induced currents (EBICs) in the sample. Both signals can be captured and digitized to produce images. The off-sample Everhart-Thornley detectors that are common in scanning electron microscopes (SEMs) can detect SEs with low noise and high bandwidth. However, the transimpedance amplifiers appropriate for detecting EBICs do not have such good performance, which makes accessing the benefits of EBIC imaging at high-resolution relatively more challenging. Here we report lattice-resolution imaging via detection of the EBIC produced by SE emission (SEEBIC). We use an aberration-corrected scanning transmission electron microscope (STEM), and image both microfabricated devices and standard calibration grids.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Elétrons
10.
Nat Commun ; 9(1): 1826, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739941

RESUMO

Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, X-ray free-electron laser, high harmonic generation, electrons, and optical lasers. One of CDI's important applications is to probe dynamic phenomena with high spatiotemporal resolution. Here, we report the development of a general in situ CDI method for real-time imaging of dynamic processes in solution. By introducing a time-invariant overlapping region as real-space constraint, we simultaneously reconstructed a time series of complex exit wave of dynamic processes with robust and fast convergence. We validated this method using optical laser experiments and numerical simulations with coherent X-rays. Our numerical simulations further indicated that in situ CDI can potentially reduce radiation dose by more than an order of magnitude relative to conventional CDI. With further development, we envision in situ CDI could be applied to probe a range of dynamic phenomena in the future.

11.
Nat Commun ; 9(1): 759, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459632

RESUMO

The Peer Review File associated with this Article was updated shortly after publication to redact confidential comments to the editor.

12.
Nat Commun ; 8(1): 1969, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213113

RESUMO

The electrochemical intercalation of layered materials, particularly graphite, is fundamental to the operation of rechargeable energy-storage devices such as the lithium-ion battery and the carbon-enhanced lead-acid battery. Intercalation is thought to proceed in discrete stages, where each stage represents a specific structure and stoichiometry of the intercalant relative to the host. However, the three-dimensional structures of the stages between unintercalated and fully intercalated are not known, and the dynamics of the transitions between stages are not understood. Using optical and scanning transmission electron microscopy, we video the intercalation of single microcrystals of graphite in concentrated sulfuric acid. Here we find that intercalation charge transfer proceeds through highly variable current pulses that, although directly associated with structural changes, do not match the expectations of the classical theories. Evidently random nanoscopic defects dominate the dynamics of intercalation.


Assuntos
Fontes de Energia Elétrica , Grafite/química , Substâncias Intercalantes/química , Eletrodos , Íons/química , Lítio/química , Microscopia Eletrônica de Transmissão e Varredura , Nanoestruturas/química , Ácidos Sulfúricos , Propriedades de Superfície
13.
Appl Phys Lett ; 107(22): 223104, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26648594

RESUMO

Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS2 heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrent collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.

15.
Nano Lett ; 15(6): 3983-7, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25927328

RESUMO

Conductive bridge random access memory (CBRAM) is a leading candidate to supersede flash memory, but poor understanding of its switching process impedes widespread implementation. The underlying physics and basic, unresolved issues such as the connecting filament's growth direction can be revealed with direct imaging, but the nanoscale target region is completely encased and thus difficult to access with real-time, high-resolution probes. In Pt/Al2O3/Cu CBRAM devices with a realistic topology, we find that the filament grows backward toward the source metal electrode. This observation, consistent over many cycles in different devices, corroborates the standard electrochemical metallization model of CBRAM operation. Time-resolved scanning transmission electron microscopy (STEM) reveals distinct nucleation-limited and potential-limited no-growth periods occurring before and after a connection is made, respectively. The subfemtoampere ionic currents visualized move some thousands of atoms during a switch and lag the nanoampere electronic currents.


Assuntos
Óxido de Alumínio/química , Cobre/química , Nanoestruturas/química , Platina/química
16.
Science ; 347(6222): 629-32, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25657242

RESUMO

Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

17.
Nature ; 503(7476): E1-2, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256806
18.
Nature ; 496(7443): 74-7, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535594

RESUMO

Dislocations and their interactions strongly influence many material properties, ranging from the strength of metals and alloys to the efficiency of light-emitting diodes and laser diodes. Several experimental methods can be used to visualize dislocations. Transmission electron microscopy (TEM) has long been used to image dislocations in materials, and high-resolution electron microscopy can reveal dislocation core structures in high detail, particularly in annular dark-field mode. A TEM image, however, represents a two-dimensional projection of a three-dimensional (3D) object (although stereo TEM provides limited information about 3D dislocations). X-ray topography can image dislocations in three dimensions, but with reduced resolution. Using weak-beam dark-field TEM and scanning TEM, electron tomography has been used to image 3D dislocations at a resolution of about five nanometres (refs 15, 16). Atom probe tomography can offer higher-resolution 3D characterization of dislocations, but requires needle-shaped samples and can detect only about 60 per cent of the atoms in a sample. Here we report 3D imaging of dislocations in materials at atomic resolution by electron tomography. By applying 3D Fourier filtering together with equal-slope tomographic reconstruction, we observe nearly all the atoms in a multiply twinned platinum nanoparticle. We observed atomic steps at 3D twin boundaries and imaged the 3D core structure of edge and screw dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional projections. The ability to image 3D disordered structures such as dislocations at atomic resolution is expected to find applications in materials science, nanoscience, solid-state physics and chemistry.

19.
Phys Rev B Condens Matter Mater Phys ; 87: 045417, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25242882

RESUMO

Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

20.
J Am Chem Soc ; 134(22): 9251-62, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22632379

RESUMO

Single crystals of doped aniline oligomers are produced via a simple solution-based self-assembly method. Detailed mechanistic studies reveal that crystals of different morphologies and dimensions can be produced by a "bottom-up" hierarchical assembly where structures such as one-dimensional (1-D) nanofibers can be aggregated into higher order architectures. A large variety of crystalline nanostructures including 1-D nanofibers and nanowires, 2-D nanoribbons and nanosheets, 3-D nanoplates, stacked sheets, nanoflowers, porous networks, hollow spheres, and twisted coils can be obtained by controlling the nucleation of the crystals and the non-covalent interactions between the doped oligomers. These nanoscale crystals exhibit enhanced conductivity compared to their bulk counterparts as well as interesting structure-property relationships such as shape-dependent crystallinity. Furthermore, the morphology and dimension of these structures can be largely rationalized and predicted by monitoring molecule-solvent interactions via absorption studies. Using doped tetraaniline as a model system, the results and strategies presented here provide insight into the general scheme of shape and size control for organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA