RESUMO
Determining the chromosomal phase of pairs of sequence variants - the arrangement of specific alleles as haplotypes - is a routine challenge in molecular genetics. Here we describe Drop-Phase, a molecular method for quickly ascertaining the phase of pairs of DNA sequence variants (separated by 1-200 kb) without cloning or manual single-molecule dilution. In each Drop-Phase reaction, genomic DNA segments are isolated in tens of thousands of nanoliter-sized droplets together with allele-specific fluorescence probes, in a single reaction well. Physically linked alleles partition into the same droplets, revealing their chromosomal phase in the co-distribution of fluorophores across droplets. We demonstrated the accuracy of this method by phasing members of trios (revealing 100% concordance with inheritance information), and demonstrate a common clinical application by phasing CFTR alleles at genomic distances of 11-116 kb in the genomes of cystic fibrosis patients. Drop-Phase is rapid (requiring less than 4 hours), scalable (to hundreds of samples), and effective at long genomic distances (200 kb).
Assuntos
Algoritmos , Cromossomos/genética , Genômica/métodos , Linhagem Celular , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Fatores de TempoRESUMO
BACKGROUND: Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome proband and its recurrence as an ovarian metastasis. RESULTS: Both the primary tumor and ovarian metastasis have common biallelic loss-of-function of both the CDH1 and TP53 tumor suppressors, indicating a common genetic origin. While the primary tumor exhibits amplification of the Fibroblast growth factor receptor 2 (FGFR2) gene, the metastasis notably lacks FGFR2 amplification but rather possesses unique biallelic alterations of Transforming growth factor-beta receptor 2 (TGFBR2), indicating the divergent in vivo evolution of a TGFBR2-mutant metastatic clonal population in this patient. As TGFBR2 mutations have not previously been functionally validated in gastric cancer, we modeled the metastatic potential of TGFBR2 loss in a murine three-dimensional primary gastric organoid culture. The Tgfbr2 shRNA knockdown within Cdh1-/-; Tp53-/- organoids generates invasion in vitro and robust metastatic tumorigenicity in vivo, confirming Tgfbr2 metastasis suppressor activity. CONCLUSIONS: We document the metastatic differentiation and genetic heterogeneity of diffuse gastric cancer and reveal the potential metastatic role of TGFBR2 loss-of-function. In support of this study, we apply a murine primary organoid culture method capable of recapitulating in vivo metastatic gastric cancer. Overall, we describe an integrated approach to identify and functionally validate putative cancer drivers involved in metastasis.
Assuntos
Evolução Molecular , Tumor de Krukenberg/genética , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Neoplasias Gástricas/genética , Adulto , Animais , Antígenos CD , Caderinas/genética , Feminino , Variação Genética , Humanos , Tumor de Krukenberg/patologia , Tumor de Krukenberg/secundário , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neoplasias Experimentais/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/secundário , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genéticaRESUMO
Two years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries. Herein, we describe the operating characteristics of DNA-binding dye based ddPCR and offer a side-by-side comparison to TaqMan probe detection. By partitioning each sample prior to thermal cycling, we demonstrate that it is now possible to use a DNA-binding dye for the quantification of multiple target species from a single reaction. The increased resolution associated with partitioning also made it possible to visualize and account for signals arising from nonspecific amplification products. We expect that the ability to combine the precision of ddPCR with both DNA-binding dye and TaqMan probe detection chemistries will further enable the research community to answer complex and diverse genetic questions.
Assuntos
DNA/análise , Corantes Fluorescentes/química , Reação em Cadeia da Polimerase Multiplex/métodos , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Ligação Proteica/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodosRESUMO
BACKGROUND: Human epidermal growth factor receptor 2 (HER2) testing is routinely performed by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) analyses for all new cases of invasive breast carcinoma. IHC is easier to perform, but analysis can be subjective and variable. FISH offers better diagnostic accuracy and added confidence, particularly when it is used to supplement weak IHC signals, but it is more labor intensive and costly than IHC. We examined the performance of droplet digital PCR (ddPCR) as a more precise and less subjective alternative for quantifying HER2 DNA amplification. METHODS: Thirty-nine cases of invasive breast carcinoma containing ≥30% tumor were classified as positive or negative for HER2 by IHC, FISH, or both. DNA templates for these cases were prepared from formalin-fixed paraffin-embedded (FFPE) tissues to determine the HER2 copy number by ddPCR. ddPCR involved emulsifying hydrolysis probe-based PCR reaction mixtures containing the ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian); also known as HER2] gene and chromosome 17 centromere assays into nanoliter-sized droplets for thermal cycling and analysis. RESULTS: ddPCR distinguished, through differences in the level of HER2 amplification, the 10 HER2-positive samples from the 29 HER2-negative samples with 100% concordance to HER2 status obtained by FISH and IHC analysis. ddPCR results agreed with the FISH results for the 6 cases that were equivocal by IHC analyses, confirming 2 of these samples as positive for HER2 and the other 4 as negative. CONCLUSIONS: ddPCR can be used as a molecular-analysis tool to precisely measure copy number alterations in FFPE samples of heterogeneous breast tumor tissue.
Assuntos
Neoplasias da Mama/genética , Dosagem de Genes , Técnicas Genéticas/normas , Reação em Cadeia da Polimerase/normas , Receptor ErbB-2/genética , Computadores , Feminino , Formaldeído/química , Humanos , Inclusão em Parafina , Reprodutibilidade dos TestesRESUMO
Three mechanistically different sample extraction methodologies, namely, silica spin columns, phenol-chloroform, and an automated magnetic capture of polymer-complexed DNA (via an Automate Express instrument), were compared for their abilities to purify nucleic acids from blood culture fluids for use in TaqMan assays for detection of Staphylococcus aureus. The extracts from silica columns required 100- to 1000-fold dilutions to sufficiently reduce the powerful PCR inhibitory effects of the anticoagulant sodium polyanetholsulfonate, a common additive in blood culture media. In contrast, samples extracted by either phenol-chloroform or the Automate Express instrument required little or no dilution, respectively, allowing for an approximate 100-fold improvement in assay sensitivity. Analysis of 60 blood culture bottles indicated that these latter two methodologies could be used to detect lower numbers of pathogens and that a growing S. aureus culture could be detected 2 hours earlier than when using silica columns. Of the three tested methodologies, the Automate Express instrument had the shortest time to result, requiring only approximately 80 minutes to process 12 samples. These findings highlight the importance of considering the mechanism when selecting a DNA extraction methodology, given that certain PCR inhibitors act in a similar fashion to DNA in certain chemical environments, resulting in copurification, whereas other methodologies use different chemistries that have advantages during the DNA purification of certain types of samples.
Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/sangue , DNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/genética , Staphylococcus aureus/isolamento & purificação , Automação , Bacteriemia/sangue , Bacteriemia/genética , Bacteriemia/microbiologia , Coleta de Amostras Sanguíneas , Humanos , Masculino , Resistência a Meticilina/genética , Proteínas de Ligação às Penicilinas , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidadeRESUMO
For the analysis of cancer, there is great interest in rapid and accurate detection of cancer genome amplifications containing oncogenes that are potential therapeutic targets. The vast majority of cancer tissue samples are formalin fixed and paraffin embedded (FFPE) which enables histopathological examination and long term archiving. However, FFPE cancer genomic DNA is oftentimes degraded and generally a poor substrate for many molecular biology assays. To overcome the issues of poor DNA quality from FFPE samples and detect oncogenic copy number amplifications with high accuracy and sensitivity, we developed a novel approach. Our assay requires nanogram amounts of genomic DNA, thus facilitating study of small amounts of clinical samples. Using droplet digital PCR (ddPCR), we can determine the relative copy number of specific genomic loci even in the presence of intermingled normal tissue. We used a control dilution series to determine the limits of detection for the ddPCR assay and report its improved sensitivity on minimal amounts of DNA compared to standard real-time PCR. To develop this approach, we designed an assay for the fibroblast growth factor receptor 2 gene (FGFR2) that is amplified in a gastric and breast cancers as well as others. We successfully utilized ddPCR to ascertain FGFR2 amplifications from FFPE-preserved gastrointestinal adenocarcinomas.
RESUMO
Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ~2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100,000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics.
Assuntos
DNA/genética , Dosagem de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , HumanosRESUMO
We have developed and field-tested a now operational civilian biodefense capability that continuously monitors the air in high-risk locations for biological threat agents. This stand-alone instrument, called the Autonomous Pathogen Detection System (APDS), collects and selectively concentrates particles from the air into liquid samples and analyzes the samples using multiplexed PCR amplification coupled with microsphere array detection. During laboratory testing, we evaluated the APDS instrument's response to Bacillus anthracis and Yersinia pestis by spiking the liquid sample stream with viable spores and cells, bead-beaten lysates, and purified DNA extracts. APDS results were also compared to a manual real-time PCR method. Field data acquired during 74 days of continuous operation at a mass-transit subway station are presented to demonstrate the specificity and reliability of the APDS. The U.S. Department of Homeland Security recently selected the APDS reported herein as the first autonomous detector component of their BioWatch antiterrorism program. This sophisticated field-deployed surveillance capability now generates actionable data in one-tenth the time of manual filter collection and analysis.
Assuntos
Bacillus anthracis/isolamento & purificação , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase/métodos , Yersinia pestis/isolamento & purificação , Bioterrorismo , Monitoramento Ambiental/instrumentação , Reação em Cadeia da Polimerase/instrumentaçãoRESUMO
The RNA-dependent RNA polymerase of influenza A virus is composed of three subunits that together synthesize all viral mRNAs and also replicate the viral genomic RNA segments (vRNAs) through intermediates known as cRNAs. Here we describe functional characterization of 16 site-directed mutants of one polymerase subunit, termed PA. In accord with earlier studies, these mutants exhibited diverse, mainly quantitative impairments in expressing one or more classes of viral RNA, with associated infectivity defects of varying severity. One PA mutant, however, targeting residues 507 and 508, caused only modest perturbations of RNA expression yet completely eliminated the formation of plaque-forming virus. Polymerases incorporating this mutant, designated J10, proved capable of synthesizing translationally active mRNAs and of replicating diverse cRNA or vRNA templates at levels compatible with viral infectivity. Both the mutant protein and its RNA products were appropriately localized in the cytoplasm, where influenza virus assembly occurs. Nevertheless, J10 failed to generate infectious particles from cells in a plasmid-based influenza virus assembly assay, and hemagglutinating material from the supernatants of such cells contained little or no nuclease-resistant genomic RNA. These findings suggest that PA has a previously unrecognized role in assembly or release of influenza virus virions, perhaps influencing core structure or the packaging of vRNAs or other essential components into nascent influenza virus particles.