Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Oncol ; 12: 904031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669430

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive disease lacking effective treatment. Animal models of HCC are necessary for preclinical evaluation of the safety and efficacy of novel therapeutics. Large animal models of HCC allow testing image-guided locoregional therapies, which are widely used in the management of HCC. Models with precise tumor mutations mimicking human HCC provide valuable tools for testing precision medicine. AXIN1 and ARID1A are two of the most frequently mutated genes in human HCC. Here, we investigated the effects of knockout of AXIN1 and/or ARID1A on proliferation, migration, and chemotherapeutic susceptibility of porcine HCC cells and we developed subcutaneous tumors harboring these mutations in pigs. Gene knockout was achieved by CRISPR/Cas9 and was validated by Next Generation Sequencing. AXIN1 knockout increased the migration of porcine HCC cells but did not alter the cell proliferation. Knockout of ARID1A increased both the proliferation and migration of porcine HCC cells. Simultaneous knockout of AXIN1 and ARID1A increased the migration, but did not alter the proliferation of porcine HCC cells. The effect of gene knockout on the response of porcine HCC cells to two of the most commonly used systemic and locoregional HCC treatments was investigated; sorafenib and doxorubicin, respectively. Knockout of AXIN1 and/or ARID1A did not alter the susceptibility of porcine HCC cells to sorafenib or doxorubicin. Autologous injection of CRISPR edited HCC cells resulted in development of subcutaneous tumors in pigs, which harbored the anticipated edits in AXIN1 and/or ARID1A. This study elucidates the effects of CRISPR-mediated knockout of HCC-associated genes in porcine HCC cells, and lays the foundation for development and utilization of genetically-tailored porcine HCC models for in vivo testing of novel therapeutic approaches in a clinically-relevant large animal model.

3.
Nat Commun ; 13(1): 2323, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484119

RESUMO

Adverse prognosis in Ewing sarcoma (ES) is associated with the presence of metastases, particularly in bone, tumor hypoxia and chromosomal instability (CIN). Yet, a mechanistic link between these factors remains unknown. We demonstrate that in ES, tumor hypoxia selectively exacerbates bone metastasis. This process is triggered by hypoxia-induced stimulation of the neuropeptide Y (NPY)/Y5 receptor (Y5R) pathway, which leads to RhoA over-activation and cytokinesis failure. These mitotic defects result in the formation of polyploid ES cells, the progeny of which exhibit high CIN, an ability to invade and colonize bone, and a resistance to chemotherapy. Blocking Y5R in hypoxic ES tumors prevents polyploidization and bone metastasis. Our findings provide evidence for the role of the hypoxia-inducible NPY/Y5R/RhoA axis in promoting genomic changes and subsequent osseous dissemination in ES, and suggest that targeting this pathway may prevent CIN and disease progression in ES and other cancers rich in NPY and Y5R.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Neoplasias Ósseas/genética , Instabilidade Cromossômica , Humanos , Hipóxia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sarcoma de Ewing/patologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Nat Cell Biol ; 24(1): 35-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027734

RESUMO

Vascular endothelial growth factor receptor type 2 (VEGFR2, also known as KDR and FLK1) signalling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species and copper (Cu) are also involved in these processes. However, their inter-relationship is poorly understood. Evidence of the role of the endothelial Cu importer CTR1 (also known as SLC31A1) in VEGFR2 signalling and angiogenesis in vivo is lacking. Here, we show that CTR1 functions as a redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signalling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 at its cytosolic C terminus after stimulation with VEGF, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signalling. In vivo, EC-specific Ctr1-deficient mice or CRISPR-Cas9-generated redox-dead Ctr1(C187A)-knockin mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signalling to enhance angiogenesis. Our study uncovers an important mechanism for sensing reactive oxygen species through CTR1 to drive neovascularization.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Linhagem Celular , Transportador de Cobre 1/genética , Cisteína/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Transdução de Sinais/fisiologia
5.
Mol Cell ; 81(2): 226-238.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33378644

RESUMO

Currently, either highly multiplexed genetic manipulations can be delivered to mammalian cells all at once or extensive engineering of gene regulatory sequences can be used to conditionally activate a few manipulations. Here, we provide proof of principle for a new system enabling multiple genetic manipulations to be executed as a preprogrammed cascade of events. The system leverages the programmability of the S. pyogenes Cas9 and is based on flexible arrangements of individual modules of activity. The basic module consists of an inactive single-guide RNA (sgRNA)-like component that is converted to an active state through the effects of another sgRNA. Modules can be arranged to bring about an algorithmic program of sequential genetic manipulations without the need for engineering cell-type-specific promoters or gene regulatory sequences. With the expanding diversity of available tools that use spCas9, this sgRNA-based system provides multiple levels of interfacing with mammalian cell biology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Animais , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/enzimologia
6.
Biotechniques ; 70(1): 37-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33222517

RESUMO

Pigs provide a valuable large animal model for several diseases due to their similarity with humans in anatomy, physiology, genetics and drug metabolism. We recently generated a porcine model for TP53R167H and KRASG12D driven hepatocellular carcinoma (HCC) by autologous liver implantation. Here we describe a streamlined approach for developing genetically tailored porcine HCC cells by CRISPR/Cas9 gene editing and isolation of homogenous genetically validated cell clones. The combination of CRISPR/Cas9 editing of HCC cells described herein with the orthotopic HCC model enables development of various porcine HCC models, each with a specific mutational profile. This allows modeling the effect of different driver mutation combinations on tumor progression and in vivo testing of novel targeted therapeutic approaches in a clinically relevant large animal model.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular , Edição de Genes , Neoplasias Hepáticas/genética , Suínos
7.
Oncotarget ; 11(28): 2686-2701, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32733642

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. New animal models that faithfully recapitulate human HCC phenotypes are required to address unmet clinical needs and advance standard-of-care therapeutics. This study utilized the Oncopig Cancer Model to develop a translational porcine HCC model which can serve as a bridge between murine studies and human clinical practice. Reliable development of Oncopig HCC cell lines was demonstrated through hepatocyte isolation and Cre recombinase exposure across 15 Oncopigs. Oncopig and human HCC cell lines displayed similar cell cycle lengths, alpha-fetoprotein production, arginase-1 staining, chemosusceptibility, and drug metabolizing enzyme expression. The ability of Oncopig HCC cells to consistently produce tumors in vivo was confirmed via subcutaneous (SQ) injection into immunodeficient mice and Oncopigs. Reproducible development of intrahepatic tumors in an alcohol-induced fibrotic microenvironment was achieved via engraftment of SQ tumors into fibrotic Oncopig livers. Whole-genome sequencing demontrated intrahepatic tumor tissue resembled human HCC at the genomic level. Finally, Oncopig HCC cells are amenable to gene editing for development of personalized HCC tumors. This study provides a novel, clinically-relevant porcine HCC model which holds great promise for improving HCC outcomes through testing of novel therapeutic approaches to accelerate and enhance clinical trials.

8.
Fam Cancer ; 18(3): 331-342, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30989425

RESUMO

Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor's mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Mutação em Linhagem Germinativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Heterozigoto , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Análise de Sequência de DNA
9.
Mol Cell ; 71(1): 42-55.e8, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979968

RESUMO

The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.


Assuntos
Proteína 9 Associada à CRISPR , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Edição de Genes , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Camundongos
10.
Clin Cancer Res ; 20(18): 4962-70, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25013126

RESUMO

PURPOSE: African Americans (AA) have the highest incidence of colorectal cancer compared with other U.S. populations and more proximal colorectal cancers. The objective is to elucidate the basis of these cancer disparities. EXPERIMENTAL DESIGN: Of note, 566 AA and 328 non-Hispanic White (NHW) colorectal cancers were ascertained in five Chicago hospitals. Clinical and exposure data were collected. Microsatellite instability (MSI) and BRAF (V600E) and KRAS mutations were tested. Statistical significance of categorical variables was tested by the Fisher exact test or logistic regression and age by the Mann-Whitney U test. RESULTS: Over a 10-year period, the median age at diagnosis significantly decreased for both AAs (68-61; P < 0.01) and NHWs (64.5- 62; P = 0.04); more AA patients were diagnosed before age 50 than NHWs (22% vs. 15%; P = 0.01). AAs had more proximal colorectal cancer than NHWs (49.5% vs. 33.7%; P < 0.01), but overall frequencies of MSI, BRAF and KRAS mutations were not different nor were they different by location in the colon. Proximal colorectal cancers often presented with lymphocytic infiltrate (P < 0.01) and were diagnosed at older ages (P = 0.02). Smoking, drinking, and obesity were less common in this group, but results were not statistically significant. CONCLUSIONS: Patients with colorectal cancer have gotten progressively younger. The excess of colorectal cancer in AAs predominantly consists of more proximal, microsatellite stable tumors, commonly presenting lymphocytic infiltrate and less often associated with toxic exposures or a higher BMI. Younger AAs had more distal colorectal cancers than older ones. These data suggest two different mechanisms driving younger age and proximal location of colorectal cancers in AAs.


Assuntos
Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Negro ou Afro-Americano/genética , Distribuição por Idade , Idade de Início , Idoso , Neoplasias Colorretais/patologia , Humanos , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
12.
Curr Protoc Mol Biol ; Chapter 12: Unit 12.15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23026907

RESUMO

Engineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory. These restriction enzyme and ligation (REAL)-based protocols can be practiced using plasmid libraries and user-friendly, Web-based software that both identifies target sites in sequences of interest and generates printable graphical guides that facilitate assembly of TALENs. With the described platform of reagents, protocols, and software, researchers can easily engineer multiple TALENs within 2 weeks using standard cloning techniques.


Assuntos
Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Biologia Molecular/métodos , Ativação Transcricional , Animais , DNA Ligases/metabolismo , Enzimas de Restrição do DNA/metabolismo , Humanos , Plantas , Recombinação Genética
13.
BMC Bioinformatics ; 11: 543, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21044337

RESUMO

BACKGROUND: Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN) is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs) designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. RESULTS: Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88%) and specificity+ (92%), but with reduced ROC AUC (0.77). Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. CONCLUSION: ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function successfully in vivo, substantially reducing the experimental effort required. ZiFOpT is freely available and incorporated in the Zinc Finger Targeter web server (http://bindr.gdcb.iastate.edu/ZiFiT).


Assuntos
Proteínas de Ligação a DNA/química , Engenharia de Proteínas/métodos , Dedos de Zinco , Inteligência Artificial , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Marcação de Genes , Análise de Sequência de DNA/métodos
14.
BMC Med Genet ; 9: 51, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18541031

RESUMO

BACKGROUND: To examine if the significantly associated SNPs derived from the genome wide allelic association study on the AREDS cohort at the NEI (dbGAP) specifically confer risk for neovascular age-related macular degeneration (AMD). We ascertained 134 unrelated patients with AMD who had one sibling with an AREDS classification 1 or less and was past the age at which the affected sibling was diagnosed (268 subjects). Genotyping was performed by both direct sequencing and Sequenom iPLEX system technology. Single SNP analyses were conducted with McNemar's Test (both 2 x 2 and 3 x 3 tests) and likelihood ratio tests (LRT). Conditional logistic regression was used to determine significant gene-gene interactions. LRT was used to determine the best fit for each genotypic model tested (additive, dominant or recessive). RESULTS: Before release of individual data, p-value information was obtained directly from the AREDS dbGAP website. Of the 35 variants with P < 10-6 examined, 23 significantly modified risk of neovascular AMD. Many variants located in tandem on 1q32-q22 including those in CFH, CFHR4, CFHR2, CFHR5, F13B, ASPM and ZBTB were significantly associated with AMD risk. Of these variants, single SNP analysis revealed that CFH rs572515 was the most significantly associated with AMD risk (P < 10-6). Haplotype analysis supported our findings of single SNP association, demonstrating that the most significant haplotype, GATAGTTCTC, spanning CFH, CFHR4, and CFHR2 was associated with the greatest risk of developing neovascular AMD (P < 10-6). Other than variants on 1q32-q22, only two SNPs, rs9288410 (MAP2) on 2q34-q35 and rs2014307 (PLEKHA1/HTRA1) on 10q26 were significantly associated with AMD status (P = .03 and P < 10-6 respectively). After controlling for smoking history, gender and age, the most significant gene-gene interaction appears to be between rs10801575 (CFH) and rs2014307 (PLEKHA1/HTRA1) (P < 10-11). The best genotypic fit for rs10801575 and rs2014307 was an additive model based on LRT. After applying a Bonferonni correction, no other significant interactions were identified between any other SNPs. CONCLUSION: This is the first replication study on the NEI dbGAP SNPs, demonstrating that alleles on 1q, 2q and 10q may predispose an individual to AMD.


Assuntos
Bases de Dados Genéticas , Predisposição Genética para Doença , Genótipo , Degeneração Macular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
15.
J Nanosci Nanotechnol ; 7(8): 2674-82, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17685283

RESUMO

The efficiency of growth of nanocrystalline tin oxide-germania nanocomposites at room temperature was investigated in the presence of the amino acids arginine, histidine, and lysine under varying conditions. The preparation of tin oxide nanoparticles under similar conditions was also examined. It was observed that of the three amino acids, arginine was the most efficient and formed higher yields of the products. Calcination of the products led to crystalline materials. The growth was carried out using a biological approach under mild conditions at room temperature. The morphology and the crystallinity of the products were examined by transmission electron microscopy and atomic force microscopy. The optical properties of the nanocomposites were characterized by fluorescence, and ultraviolet-visible spectroscopy. The nitrogen adsorption studies indicate that the nanocomposites obtained were mesoporous in nature. The nanocomposites exhibited high BET surface area. Such materials could be potentially useful for the development of improved gas sensor devices and optical devices.


Assuntos
Aminoácidos/química , Germânio/química , Nanocompostos/química , Nanopartículas/química , Compostos de Estanho/química , Arginina/química , Catálise , Histidina/química , Lisina/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nitrogênio/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA