Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167232, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734608

RESUMO

Sorption of organic molecules on mineral surfaces can occur through several binding mechanisms of varying strength. Here, we investigated the importance of inner-sphere P-O-Fe bonds in synthetic and natural mineral-organic associations. Natural organic matter such as water extracted soil organic matter (WESOM) and extracellular polymeric substances (EPS) from liquid bacterial cultures were adsorbed to goethite and examined by FTIR spectroscopy and P K-edge NEXAFS spectroscopy. Natural particles from a Bg soil horizon (Gleysol) were subjected to X-ray fluorescence (XRF) mapping, NanoSIMS imaging, and NEXAFS spectro-microscopy at the P K-edge. Inner-sphere P-O-Fe bonds were identified for both, adsorbed EPS extracts and adsorbed WESOMs. Characteristic infrared peaks for P-O-Fe stretching vibrations are present but cannot unambiguously be interpreted due to possible interferences with mono- and polysaccharides. For the Bg horizon, P was only found on Fe oxides, covering the entire surface at different concentrations, but not on clay minerals. Linear combination fitting of NEXAFS spectra indicates that this adsorbed P is mainly a mixture of orthophosphate and organic P compounds. By combining atomic force microscopy (AFM) images with STXM-generated C and Fe distribution maps, we show that the Fe oxide surfaces were fully coated with organic matter. In contrast, clay minerals revealed a much lower C signal. The C NEXAFS spectra taken on the Fe oxides had a substantial contribution of carboxylic C, aliphatic C, and O-alkyl C, which is a composition clearly different from pure adsorbed EPS or aromatic-rich lignin-derived compounds. Our data show that inner-sphere P-O-Fe bonds are important for the association of Fe oxides with soil organic matter. In the Bg horizon, carboxyl groups and orthophosphate compete with the organic P compounds for adsorption sites.

2.
Small Methods ; 7(10): e2201612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452235

RESUMO

The mono-dispersed cubic siegenite CuNi2 S4 ultra-fine (≈5 nm) nanocrystals are fabricated through crystallization engineering under hot injection. The strong hydroxylation on mostly exposed CuNi2 S4 (220) surface leads to the formation of multi-valence (Cu+ , Cu2+ , Ni2+ , Ni3+ ) species with unsaturated hybridization and coordination micro-environments, which can induce rich redox reactions to optimize interfacial kinetics for the adsorbed reaction intermediates. The as-synthesized CuNi2 S4 nanocrystals with ultra-small particle size and the characteristics of being highly dispersed can increase specific surface area and hydroxylated active sites, which considerably contribute to the improvement of photocatalytic activities. Experimental and theoretical studies indicate that the CuNi2 S4 with unique surface condition can properly modulate the charge density distribution and the electronic band structure, thus achieving an optimal band gap for enhancing visible light absorption. Additionally, the strong hydroxylation on CuNi2 S4 (220) surface can not only make the photocatalytic process stable in alkaline environment but also bring about an impurity level between conduction and valence band, which facilitates the separation of photo-induced charge carriers by suppressing the rapid re-combination of exited electrons and holes. The optimization of band structure should be the intrinsic reason for the efficient photocatalytic pollutant degradation and hydrogen production under visible light illumination.

3.
Glob Chang Biol ; 28(13): 4211-4224, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377512

RESUMO

Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.


Assuntos
Furunculose , Gases de Efeito Estufa , Animais , Elétrons , Gases de Efeito Estufa/análise , Metano/análise , Solo/química
4.
Nanomicro Lett ; 14(1): 25, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889998

RESUMO

The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C-Fe-Co-ZIF) for the syngas generation from ECO2RR. The synergistic effect of the bimetallic catalyst promotes CO production. Compared to the pure C-Co-ZIF, C-Fe-Co-ZIF facilitates CO production with a CO Faradaic efficiency (FE) boost of 10%, with optimal FECO of 51.9%, FEH2 of 42.4% at - 0.55 V, and CO current density of 8.0 mA cm-2 at - 0.7 V versus reversible hydrogen electrode (RHE). The H2/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of - 0.35 to - 0.8 V versus RHE. The total FECO+H2 maintains as high as 93% over 10 h. The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe, which is essential for the enhancement of the CO production in ECO2RR. The positive impacts of Cu-Co and Ni-Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO2RR.

5.
J Environ Qual ; 50(6): 1364-1380, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34403153

RESUMO

About 91,300 ha of peatlands has been rewetted in western Europe since the mid-1990s. Still, it is unknown how long-term rewetting alters the dissolved organic matter (DOM) concentration, molecular composition, and functional groups. We examined these DOM characteristics in three peatland types subjected to 47- to 231-yr drainage and 18- to 24-yr rewetting to address this knowledge gap. Cold water-extractable DOM was characterized by pyrolysis field ionization mass spectrometry (Py-FIMS) and X-ray absorption near-edge structure (XANES) spectroscopy. The dissolved organic carbon (DOC) concentration in the rewetted forest peatland was 2.7 times higher than in the drained forest peatland. However, rewetting decreased the DOC concentrations by 1.5 and 4 times in the coastal peatland and percolation mire, respectively, compared with their respective drained peatlands at the topsoil horizons. The Py-FIMS analysis revealed that all nine DOM compound classes' relative abundances differed between the rewetted and drained forest peatland with the lower relative abundances of the labile DOM compound classes in the rewetted forest peatlands. However, most DOM compound classes' relative abundances were similar between the rewetted and drained coastal peatlands and percolation mires. The XANES also revealed nine carbon and seven nitrogen functional groups with no apparent differences between the two contrasting management practices. The influence of drainage and rewetting on DOC concentration and molecular composition depends on peatland type, drainage period, rewetting intensity, and peat degradation status that should be considered in future research for understanding DOM transformation and transportation from degraded and restored peatland ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Áreas Alagadas , Carbono , Ecossistema , Solo
6.
Chemosphere ; 283: 131023, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153922

RESUMO

Solid-state 13C Nuclear Magnetic Resonance (NMR) and synchrotron-based X-ray Absorption Near-Edge Structure (XANES) have applications for determining the relative proportions of organic C functional groups in materials. Spectral data obtained by NMR is typically processed using integration (INTEG) whereas XANES spectral data is typically processed using deconvolution (DECONV). The objective of this study was to examine the impact of spectral data collection and processing on the estimated relative proportions of organic C functional groups in biochars. Biochars showed large variations in aromatic C (45-97%), alkyl C (0-23%), O-alkyl C (1-41%), phenolic C (0-20%) and carboxylic C (0-20%). NMR had a better ability than XANES to differentiate % aromatic C across biochars, and the mean % aromatic C was always greater for NMR-INTEG and NMR-DECONV than for XANES-INTEG or XANES-DECONV. NMR-INTEG showed significant associations with NMR-DECONV and XANES-INTEG for % aromatic C and alkyl C, but there were no significant associations between NMR and XANES for % O-alkyl C, phenolic C and carboxylic C. As well, there was no association between NMR-INTEG and XANES-DECONV for any organic C functional group, and in some cases, spectral data collection and processing influenced the quantification of organic C functional groups in a given biochar to the extent that the differences observed were as large as differences observed between biochars when analyzed using the same spectral data collection and processing technique. We conclude that great caution must be taken when comparing studies that determined organic C functional groups in materials using NMR-INTEG versus XANES-DECONV.


Assuntos
Carbono , Carvão Vegetal , Coleta de Dados , Espectroscopia de Ressonância Magnética
7.
Geochim Cosmochim Acta ; 276: 170-185, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32362680

RESUMO

Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials. PyOM was produced from three different plants (e.g. Maize-Zea mays L.; Ryegrass-Lollium perenne L.; and Willow-Salix viminalix L.) each with varying initial N contents at three pyrolysis temperatures (350, 500 and 700 °C). Mineralization of C and N was measured from incubations of uncharred OM and PyOM in a sand matrix for 256 days at 30 °C. As pyrolysis temperature increased from 350 to 700 °C, aromatic C[bond, double bond]N in 6-membered rings (putative) increased threefold. Aromatic C[bond, double bond]N in 6-membered oxygenated ring increased sevenfold, and quaternary aromatic N doubled. Initial uncharred OM-N content was positively correlated with the proportion of heterocyclic aromatic N in PyOM (R2 = 0.44; P < 0.0001; n = 42). A 55% increase of aromatic N heterocycles at high OM-N content, when compared to low OM-N content, suggests that higher concentrations of N favor the incorporation of N atoms into aromatic structures by overcoming the energy barrier associated with the electronic and atomic configuration of the C structure. A ten-fold increase of aromatic C[bond, double bond]N in 6-membered rings (putative) in PyOM (as proportion of all PyOM-N) decreased C mineralization by 87%, whereas total N contents and C:N ratios of PyOM had no effects on C mineralization of PyOM-C for both pyrolysis temperatures (for PyOM-350 °C, R2 = 0.15; P < 0.27; for PyOM-700 °C, R2 = 0.22; P < 0.21). Oxidized aromatic N in PyOM toluene extracts correlated with higher C mineralization, whereas aromatic N in 6-membered heterocycles correlated with reduced C mineralization (R2 = 0.56; P = 0.001; n = 100). Similarly, aromatic N in 6-membered heterocycles in PyOM remaining after toluene extraction reduced PyOM-C mineralization (R2 = 0.49; P = 0.0006; n = 100). PyOM-C mineralization increased when N atoms were located at the edge of the C network in the form of oxidized N functionalities or when more N was found in PyOM toluene extracts and was more accessible to microbial oxidation. These results confirm the hypothesis that C persistence of fire-derived OM is significantly affected by its molecular N structure and the presented quantitative structure-activity relationship can be utilized for predictive modeling purposes.

8.
Nat Commun ; 10(1): 664, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737387

RESUMO

Fire-derived organic matter, often referred to as pyrogenic organic matter (PyOM), is present in the Earth's soil, sediment, atmosphere, and water. We investigated interactions of PyOM with ammonia (NH3) gas, which makes up much of the Earth's reactive nitrogen (N) pool. Here we show that PyOM's NH3 retention capacity under ambient conditions can exceed 180 mg N g-1 PyOM-carbon, resulting in a material with a higher N content than any unprocessed plant material and most animal manures. As PyOM is weathered, NH3 retention increases sixfold, with more than half of the N retained through chemisorption rather than physisorption. Near-edge X-ray absorption fine structure and nuclear magnetic resonance spectroscopy reveal that a variety of covalent bonds form between NH3-N and PyOM, more than 10% of which contained heterocyclic structures. We estimate that through these mechanisms soil PyOM stocks could retain more than 600-fold annual NH3 emissions from agriculture, exerting an important control on global N cycling.

9.
Nat Mater ; 17(11): 1033-1039, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250176

RESUMO

Bimetallic nanoparticles with tailored structures constitute a desirable model system for catalysts, as crucial factors such as geometric and electronic effects can be readily controlled by tailoring the structure and alloy bonding of the catalytic site. Here we report a facile colloidal method to prepare a series of platinum-gold (PtAu) nanoparticles with tailored surface structures and particle diameters on the order of 7 nm. Samples with low Pt content, particularly Pt4Au96, exhibited unprecedented electrocatalytic activity for the oxidation of formic acid. A high forward current density of 3.77 A mgPt-1 was observed for Pt4Au96, a value two orders of magnitude greater than those observed for core-shell structured Pt78Au22 and a commercial Pt nanocatalyst. Extensive structural characterization and theoretical density functional theory simulations of the best-performing catalysts revealed densely packed single-atom Pt surface sites surrounded by Au atoms, which suggests that their superior catalytic activity and selectivity could be attributed to the unique structural and alloy-bonding properties of these single-atomic-site catalysts.

10.
Environ Sci Technol ; 52(21): 12349-12357, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30260632

RESUMO

The formation of reactive manganese (Mn) species is emerging as a key regulator of carbon oxidation rates, and thus CO2 emissions, in soils and sediments. Many subsurface environments are characterized by steep oxygen gradients, forming oxic-anoxic interfaces that enable rapid redox cycling of Mn. Here, we examined the impact of Mn(II)aq oxidation along oxic-anoxic interfaces on carbon oxidation in soils using laboratory-based diffusion reactors. A combination of cyclic voltammetry, X-ray absorption spectroscopy, and X-ray microprobe imaging revealed a tight coupling between Mn(II)aq oxidation and carbon oxidation at the oxic-anoxic interface. Specifically, zones of Mn(II)aq oxidation across the oxic-anoxic transition also exhibited the greatest lignin oxidation potential, carbon solubilization, and oxidation. Microprobe imaging further revealed that the generation of Mn(III)-dominated precipitates coincided with carbon oxidation. Combined, our findings demonstrate that biotic Mn(II)aq oxidation, specifically the formation of Mn(III) species, contributes to carbon oxidation along oxic-anoxic interfaces in soils and sediments. Our results suggest that we should regard carbon oxidation not merely as a function of molecular composition, which insufficiently predicts rates, but in relation to microenvironments favoring the formation of critically important oxidants such as Mn(III).


Assuntos
Carbono , Manganês , Oxirredução , Solo , Espectroscopia por Absorção de Raios X
11.
Nat Chem ; 10(2): 149-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29359759

RESUMO

The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

12.
Sci Rep ; 6: 26127, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212680

RESUMO

Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

13.
Science ; 352(6283): 333-7, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013427

RESUMO

Earth-abundant first-row (3d) transition metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.

14.
Environ Sci Technol ; 49(2): 1035-42, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526317

RESUMO

Synchrotron-based soft-X-ray scanning transmission X-ray microscopy (STXM) has the potential to provide nanoscale resolution of the associations among biological and geological materials. However, standard methods for how samples should be prepared, measured, and analyzed to allow the results from these nanoscale imaging and spectroscopic tools to be scaled to field scale biogeochemical results are not well established. We utilized a simple sample preparation technique that allows one to assess detailed mineral, metal, and microbe spectroscopic information at the nano- and microscale in soil colloids. We then evaluated three common approaches to collect and process nano- and micronscale information by STXM and the correspondence of these approaches to millimeter scale soil measurements. Finally, we assessed the reproducibility and spatial autocorrelation of nano- and micronscale protein, Fe(II) and Fe(III) densities in a soil sample. We demonstrate that linear combination fitting of entire spectra provides slightly different Fe(II) mineral densities compared to image resonance difference mapping but that difference mapping results are highly reproducible between among sample replicates. Further, STXM results scale to the mm scale in complex systems with an approximate geospatial range of 3 µm in these samples.


Assuntos
Solo/química , Espectrometria por Raios X/métodos , Coloides , Ecologia , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/química , Metais , Microscopia/métodos , Minerais/química , Reprodutibilidade dos Testes
15.
Nanoscale ; 6(15): 9166-76, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24978624

RESUMO

Efforts have been made to elucidate the origin of d(0) magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.


Assuntos
Nanoestruturas , Nanotecnologia/métodos , Óxido de Zinco/química , Análise de Fourier , Luminescência , Magnetismo , Nanofios , Oxigênio/química , Espectrofotometria , Propriedades de Superfície , Temperatura , Compostos de Estanho/química , Espectroscopia por Absorção de Raios X , Raios X
16.
Phys Chem Chem Phys ; 16(30): 15787-91, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24963799

RESUMO

The electronic structure study of carbon nanotube-graphene complexes has been performed using comprehensive X-ray absorption spectroscopy (XAS) at Fe L- and K-edges, along with C, N and O K-edges. The results obtained from the study of an iron-containing carbon nanotube-graphene complex (NT-G) have been compared in great detail with those of an iron-free carbon nanotube-graphene complex (pNT-G) and iron phthalocyanine (FePc). It has been confirmed that complex-like Fe(3+) in a high spin state is the major iron component in NT-G. The C and N K-edge XANES further confirmed that Fe is very likely to be bonded to N in NT-G. This Fe-N species should be the active site for enhanced oxygen reduction reaction (ORR) activity in NT-G. A unique O K-edge X-ray absorption spectroscopic feature has been observed in NT-G, which might be caused by chemisorbed O2 on the Fe-N site. Such knowledge is important for the understanding of this specific complex, and the knowledge should benefit the rational design of other carbon/metal/nitrogen-containing ORR catalysts with further improved performance.

17.
Environ Sci Pollut Res Int ; 21(4): 2943-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170498

RESUMO

Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge µ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.


Assuntos
Cobre/análise , Poluentes do Solo/análise , Adsorção , China , Cobre/química , Monitoramento Ambiental , Compostos de Ferro/química , Microscopia/métodos , Minerais/química , Mineração , Solo/química , Poluentes do Solo/química , Síncrotrons , Espectroscopia por Absorção de Raios X
18.
Environ Sci Technol ; 47(24): 14290-7, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24261818

RESUMO

In situ aqueous solutions containing copper-ligand mixtures were measured at the Cu L-edge using X-ray absorption near edge structure (XANES) and with attenuated total reflectance infrared (ATR-FTIR) spectroscopies. Copper complexation with environmentally relevant ligands such as EDTA, citrate, and malate provided a bridge between spectroscopic studies and general environmental behavior and will allow for future study of complex environmental samples. XANES results show that the lowest unoccupied molecular orbital (LUMO) energy is governed by the ligand field strength and is related to Lewis acid/base properties of the ligand functional groups. Complementary ATR-FTIR studies confirmed the importance of water molecules in the structure of these Cu-ligand complexes and provided in-depth structural analysis to support the XANES data. Copper-malate is shown to have a 5/6-O-ring structure, and Cu-ethylenediaminetetraacetate has pentadentate coordination. Cu L-edge XANES also revealed direct Cu-N coordination in these aqueous solutions with amide functional groups.


Assuntos
Cobre/química , Compostos Orgânicos/química , Vibração , Água/química , Espectroscopia por Absorção de Raios X , Concentração de Íons de Hidrogênio , Ligantes , Modelos Teóricos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Titulometria
19.
J Am Chem Soc ; 135(23): 8452-5, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23701670

RESUMO

Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.


Assuntos
Técnicas Eletroquímicas , Hidróxidos/química , Ferro/química , Níquel/química , Água/química , Catálise , Hidróxidos/síntese química , Nanotubos de Carbono/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
20.
Chem Commun (Camb) ; 49(17): 1765-7, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340608

RESUMO

Visualization of the state of charge (SOC) in an LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene hybrid nanostructure (LMFP-C) is realized by chemical mapping of the Fe valance state using scanning transmission X-ray microscopy (STXM). The LMFP-graphene interaction strength variation studied by C K-edge STXM has been correlated to SOC variation, i.e. a stronger interaction was observed for sample regions with a higher SOC in LMFP. Such structure-performance correlation opens new perspectives for a rational design of a better performance olivine cathode for lithium ion batteries.


Assuntos
Grafite/química , Metais/química , Nanotubos/química , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanotubos/ultraestrutura , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA