Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Physiol Int ; 107(1): 92-105, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32491290

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is involved in development and reproduction. We previously described elevated PACAP levels in the milk compared to the plasma, and the presence of its specific PAC1 receptor in the mammary gland. This study aimed to determine PACAP and vasoactive intestinal peptide (VIP) levels in female suckling lambs compared to ewe plasma and mammary gland, as well as their age-dependent alterations. mRNA expressions of PACAP, VIP, PAC1 receptor and brain-derived neurotrophic factor (BDNF) were quantified in the milk whey and mammary gland. PACAP38-like immunoreactivity (PACAP38-LI) was measured in plasma, milk whey and mammary gland by radioimmunoassay, VIP-LI by enzyme-linked immunoassay. PACAP38-LI was 5, 6 times higher in the milk compared to the plasma of lactating sheep. It significantly increased in the lamb plasma 1 h, but returned to basal level 2 h after suckling. However, VIP mRNA was not present in the mammary gland, we detected the VIP protein in the milk whey. BDNF mRNA significantly decreased with age to approximately 60% and 25% in the 3- and 10-year-old sheep respectively, compared to the 3-month-old lambs. No differences were found between mammary and jugular vein plasma PACAP and VIP concentrations, or during the daily cycle. We propose a rapid absorption of PACAP38 from the milk and/or its release in suckling lambs. PACAP accumulated in the milk might be synthesized in the mammary gland or secreted from the plasma of the mothers. PACAP is suggested to have differentiation/proliferation promoting and immunomodulatory effects in the newborns and/or a local function in the mammary gland.


Assuntos
Animais Recém-Nascidos , Animais Lactentes/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Plasma/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Animais Recém-Nascidos/sangue , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Fatores Imunológicos/análise , Fatores Imunológicos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/análise , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ovinos
2.
Physiol Int ; 107(1): 55-66, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32598332

RESUMO

Numerous studies indicate that smoking during pregnancy exerts harmful effects on fetal brain development. The aim of this study was to determine the influence of maternal smoking during pregnancy on the early physical and neurobehavioral development of newborn rats. Wistar rats were subjected to whole-body smoke exposure for 2 × 40 min daily from the day of mating until day of delivery. For this treatment, a manual closed-chamber smoking system and 4 research cigarettes per occasion were used. After delivery the offspring were tested daily for somatic growth, maturation of facial characteristics and neurobehavioral development until three weeks of age. Motor coordination tests were performed at 3 and 4 weeks of age. We found that prenatal cigarette smoke exposure did not alter weight gain or motor coordination. Critical physical reflexes indicative of neurobehavioral development (eyelid reflex, ear unfolding) appeared significantly later in pups prenatally exposed to smoke as compared to the control group. Prenatal smoke exposure also resulted in a delayed appearance of reflexes indicating neural maturity, including hind limb grasping and forelimb placing reflexes. In conclusion, clinically relevant prenatal exposure to cigarette smoke results in slightly altered neurobehavioral development in rat pups. These findings suggest that chronic exposure of pregnant mothers to cigarette smoke (including passive smoking) results in persisting alterations in the developing brain, which may have long-lasting consequences supporting the concept of developmental origins of health and disease (DoHAD).


Assuntos
Comportamento Animal/efeitos dos fármacos , Doenças do Sistema Nervoso/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Fumar/efeitos adversos , Animais , Animais Recém-Nascidos , Peso Corporal , Modelos Animais de Doenças , Feminino , Masculino , Atividade Motora/fisiologia , Doenças do Sistema Nervoso/induzido quimicamente , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Reflexo/fisiologia
3.
J Mol Neurosci ; 68(3): 377-388, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30094580

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with neuroprotective and neurotrophic effects. This suggests its influence on the development of teeth, which are, similarly to the nervous system, ectoderm and neural crest derivatives. Our earlier studies have shown morphological differences between wild-type (WT) and PACAP-deficient mice, with upregulated sonic hedgehog (SHH) signaling in the lack of PACAP. Notch signaling is a key element of proper tooth development by regulating apoptosis and cell proliferation. In this study, our main goal was to evaluate the possible effects of PACAP on Notch signaling pathway. Immunohistochemical staining was performed of Notch receptors (Notch1, 2, 3, 4), their ligands [delta-like protein (DLL)1, 3, 4, Jagged1, 2], and intracellular target molecules [CSL (CBF1 humans/Su (H) Drosophila/LAG1 Caenorhabditis elegans transcription factor); TACE (TNF-α converting enzyme), NUMB] in molar teeth of 5-day-old WT, and homozygous and heterozygous PACAP-deficient mice. We measured immunopositivity in the enamel-producing ameloblasts and dentin-producing odontoblasts. Notch2 receptor and DLL1 expression were elevated in ameloblasts of PACAP-deficient mice compared to those in WT ones. The expression of CSL showed similar results both in the ameloblasts and odontoblasts. Jagged1 ligand expression was elevated in the odontoblasts of homozygous PACAP-deficient mice compared to WT mice. Other Notch pathway elements did not show significant differences between the genotype groups. The lack of PACAP leads to upregulation of Notch pathway elements in the odontoblast and ameloblast cells. The underlying molecular mechanisms are yet to be elucidated; however, we propose SHH-dependent and independent processes. We hypothesize that this compensatory upregulation of Notch signaling by the lack of PACAP could represent a salvage pathway in PACAP-deficient animals.


Assuntos
Dente Molar/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Ameloblastos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Receptor Notch1/genética , Regulação para Cima
4.
J Mol Neurosci ; 68(3): 397-407, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30542799

RESUMO

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.


Assuntos
Anti-Inflamatórios/farmacologia , Fármacos Neuroprotetores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Retina/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Células CHO , Cricetinae , Cricetulus , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Soluções Oftálmicas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Retina/metabolismo , Peptídeo Intestinal Vasoativo/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
5.
Geroscience ; 40(5-6): 437-452, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30345481

RESUMO

Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.


Assuntos
Envelhecimento/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Animais , Camundongos , Modelos Animais
6.
Neurotoxicology ; 66: 185-194, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604313

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide highly expressed in the central and peripheral nervous system, where it exerts several neuromodulatory functions and is an important trophic and protective factor. PACAP has been shown to activate several protective pathways, mainly through its specific PAC1 receptor and protein kinase A, C and MAP kinases downstream. It has been shown to have very potent neuroprotective actions against different neurotoxic agents both in vitro and in vivo. The aim of the present review is to provide an overview on the neurotoxic injuries against which PACAP exerts protection, and to give an insight into its protective mechanism. We give a summary of the neuroprotective effects against the most commonly used neurotoxic agents, such as 6-OHDA, MPTP, glutamate and some less well-known neurotoxic compounds. Also endogenous PACAP has neuroprotective effects, known from studies in PACAP knockout mice or from blocking endogenous effects by antagonists. Altogether, the vast amount of data for the neuroprotective effects of PACAP give a firm background for its endogenous role as part of the neuroprotective machinery and its possible future therapeutic use as a neuroprotective factor.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Neurotoxinas/toxicidade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Síndromes Neurotóxicas/metabolismo
7.
Neurotox Res ; 33(4): 702-715, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29230633

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-known neuropeptide with strong neurotrophic and neuroprotective effects. PACAP exerts its protective actions via three G protein-coupled receptors: the specific Pac1 receptor (Pac1R) and the Vpac1/Vpac2 receptors, the neuroprotective effects being mainly mediated by the Pac1R. The protective role of PACAP in models of Parkinson's disease and other neurodegenerative diseases is now well-established in both in vitro and in vivo studies. PACAP and its receptors occur in the mammalian brain, including regions associated with Parkinson's disease. PACAP receptor upregulation or downregulation has been reported in several injury models or human diseases, but no data are available on alterations of receptor expression in Parkinson's disease. The model closest to the human disease is the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced macaque model. Therefore, our present aim was to evaluate changes in Pac1R expression in basal ganglia related to Parkinson's disease in a macaque model. Monkeys were rendered parkinsonian with MPTP, and striatum, pallidum, and cortex were evaluated for Pac1R immunostaining. We found that Pac1R immunosignal was markedly reduced in the caudate nucleus, putamen, and internal and external parts of the globus pallidus, while the immunoreactivity remained unchanged in the cortex of MPTP-treated parkinsonian monkey brains. This decrease was attenuated in some brain areas in monkeys treated with L-DOPA. The strong, specific decrease of the PACAP receptor immunosignal in the basal ganglia of parkinsonian macaque monkey brains suggests that the PACAP/Pac1R system may play an important role in the development/progression of the disease.


Assuntos
Gânglios da Base/metabolismo , Intoxicação por MPTP/patologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Antiparkinsonianos/uso terapêutico , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Levodopa/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Macaca fascicularis , Masculino , Fosfopiruvato Hidratase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Reproduction ; 155(2): 129-139, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101268

RESUMO

PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.


Assuntos
Biomarcadores/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Túbulos Seminíferos/patologia , Motilidade dos Espermatozoides/fisiologia , Espermatogênese , Espermatozoides/patologia , Animais , Masculino , Camundongos , Camundongos Knockout , Proteína Fosfatase 2/metabolismo , Reprodução , Túbulos Seminíferos/metabolismo , Espermatozoides/metabolismo
9.
Neuropeptides ; 65: 106-113, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28698051

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the gastrointestinal tract. It has been shown to exert actions on intestinal functions, mainly affecting glandular secretion and motility. PACAP has several different effects on cell survival depending on the cell type and the applied stimulus. Its influences on small intestinal epithelial cells are not yet elucidated, therefore the aim of the present study was to investigate the effects of PACAP on intestinal epithelial cells having high turnover (INT 407) against different harmful stimuli, such as oxidative stress, in vitro hypoxia and gamma radiation. We tested the effect of PACAP on proliferation and cell survival using MTT assay. Moreover, various cancer-related factors were evaluated by oncology array. PACAP did not influence the proliferation rate of INT 407 cells. Its cell survival-enhancing effect could be detected against oxidative stress, but not against in vitro hypoxia or gamma irradiation. Clonogenic survival assay was performed to analyze the effect of PACAP on clonogenic potential of cells exposed to gamma radiation. Surprisingly, PACAP enhanced the clone-forming ability decrease induced by irradiation. Western blot analysis of ERK1/2 phosphorylation was performed in order to obtain further information on the molecular background. Our data showed phospho-ERK1/2 suppression of PACAP in irradiated cells. Furthermore, the role of endogenous PACAP against oxidative stress was also investigated performing ADCYAP1 small interfering RNA transfection. We found significant difference in the cell vulnerability between cells undergoing silencing and cells without transfection suggesting the protective role of the endogenously present PACAP against oxidative stress in INT 407 cells. In summary, PACAP seems to be able to exert contradictory effects in INT 407 cells depending on the applied stressor, suggesting its regulatory role in the cellular household.


Assuntos
Células Epiteliais/fisiologia , Intestino Delgado/citologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Estresse Oxidativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem
10.
J Mol Neurosci ; 60(2): 186-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27566170

RESUMO

A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 µM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 µM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 µM maxadilan application was more effective than 0.1 µM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.


Assuntos
Proteínas de Insetos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Degeneração Retiniana/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/metabolismo , Proteínas de Insetos/administração & dosagem , Proteínas de Insetos/farmacologia , Injeções Intravítreas , Isquemia/complicações , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/etiologia , Vasos Retinianos/patologia
11.
J Mol Neurosci ; 59(2): 300-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27154515

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are required to clarify the molecular background of the effects of PACAP on tooth development.


Assuntos
Incisivo/ultraestrutura , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Carbonatos/análise , Esmalte Dentário/ultraestrutura , Dentina/ultraestrutura , Durapatita/análise , Incisivo/química , Incisivo/crescimento & desenvolvimento , Masculino , Camundongos , Fosfatos/análise , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência
12.
Endocrinology ; 157(6): 2356-66, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27046436

RESUMO

The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.


Assuntos
Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Iodeto Peroxidase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Western Blotting , Células HEK293 , Humanos , Imuno-Histoquímica , Iodeto Peroxidase/genética , Masculino , Camundongos , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Hormônios Tireóideos/metabolismo , Tireotropina/metabolismo , Iodotironina Desiodinase Tipo II
13.
Neurotox Res ; 29(3): 432-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739825

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as retinal degenerations. Diabetic retinopathy (DR), the most common complication of diabetes, affects the microvasculature and neuronal architecture of the retina. We have proven earlier that PACAP is also protective in a rat model of DR. In this study, streptozotocin-induced DR was treated with intravitreal PACAP administration in order to further analyze the synaptic structure and proteins of PACAP-treated diabetic retinas, primarily in the vertical information processing pathway. Streptozotocin-treated Wistar rats received intravitreal PACAP injection three times into the right eye 2 weeks after the induction of diabetes. Morphological and molecular biological (qRT-PCR; Western blot) methods were used to analyze retinal synapses (ribbons, conventional) and related structures. Electron microscopic analysis revealed that retinal pigment epithelium, the ribbon synapses and other synaptic profiles suffered alterations in diabetes. However, in PACAP-treated diabetic retinas more bipolar ribbon synapses were found intact in the inner plexiform layer than in DR animals. The ribbon synapse was marked with C-terminal binding protein 2/Bassoon and formed horseshoe-shape ribbons, which were more retained in PACAP-treated diabetic retinas than in DR rats. These results are supported by molecular biological data. The selective degeneration of related structures such as bipolar and ganglion cells could be ameliorated by PACAP treatment. In summary, intravitreal administration of PACAP may have therapeutic potential in streptozotocin-induced DR through maintaining synapse integrity in the vertical pathway.


Assuntos
Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Fármacos Neuroprotetores/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Retina/metabolismo , Retina/ultraestrutura , Animais , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/prevenção & controle , Masculino , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestrutura , Ratos , Ratos Wistar , Retina/efeitos dos fármacos , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/ultraestrutura , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Estreptozocina , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura
14.
Transplant Proc ; 47(7): 2210-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26361682

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with very diverse distribution and functions. Among others, PACAP is a potent cytoprotective peptide due to its antiapoptotic, anti-inflammatory, and antioxidant actions. This also has been shown in different kidney pathologies, including ischemia/reperfusion-induced kidney injury. Similar protective effects of the endogenous PACAP are confirmed by the increased vulnerability of PACAP-deficient mice to different harmful stimuli. Kidneys of homozygous PACAP-deficient mice have more severe damages in renal ischemia/reperfusion and kidney cell cultures isolated from these mice show increased sensitivity to renal oxidative stress. In our present study we raised the question of whether the partial lack of the PACAP gene is also deleterious, i.e. whether heterozygous PACAP-deficient mice also display more severe damage after renal ischemia/reperfusion. Mice underwent 45 or 60 minutes of ischemia followed by 2 weeks reperfusion. Histological evaluation of the kidneys was performed and individual histopathological parameters were graded. Furthermore, we investigated apoptotic markers, cytokine expression, and the activity of superoxide dismutase (SOD) enzyme 24 hours after 60 minutes of renal ischemia/reperfusion. We found no difference between the intact kidneys of wild-type and heterozygous mice, but marked differences could be observed following ischemia/reperfusion. Heterozygous PACAP-deficient mice had more severe histological alterations, with significantly higher histopathological scores for most of the tested parameters. Higher level of the proapoptotic pp38 MAPK and of some proinflammatory cytokines, as well as lower activity of the antioxidant SOD could be found in these mice. In conclusion, the partial lack of the PACAP gene results in worse outcomes in cases of renal ischemia/reperfusion, confirming that PACAP functions as an endogenous protective factor in the kidney.


Assuntos
Rim/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Marcação de Genes , Heterozigoto , Homozigoto , Inflamação , Nefropatias/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeos/química , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/patologia , Superóxido Dismutase/metabolismo , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Neuroscience ; 308: 144-56, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26321242

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on G protein-coupled receptors: the specific PAC1 and VPAC1/VPAC2 receptors. PACAP6-38 was described as a potent PAC1/VPAC2 antagonist in several models, but recent studies reported its agonistic behaviors proposing novel receptorial mechanisms. Since PACAP in migraine is an important research tool, we investigated the effect of PACAP and its peptide fragments on trigeminal primary sensory neurons. Effect of the peptides was studied with ratiometric Ca-imaging technique using the fluorescent indicator fura-2 AM on primary cultures of rat and mouse trigeminal ganglia (TRGs) neurons. Specificity testing was performed on PAC1, VPAC1 and VPAC2 receptor-expressing cell lines with both fluorescent and radioactive Ca-uptake methods. Slowly increasing intracellular free calcium concentration [Ca(2+)]i was detected after PACAP1-38, PACAP1-27, vasoactive intestinal polypeptide (VIP) and the selective PAC1 receptor agonist maxadilan administration on TRG neurons, but interestingly, PACAP6-38, VIP6-28 and the PAC1 receptor antagonist M65 also caused similar activation. The VPAC2 receptor agonist BAY 55-9837 induced similar activation, while the VPAC1 receptor agonist Ala(11,22,28)VIP had no significant effect on [Ca(2+)]i. It was proven that the Ca(2+)-influx originated from intracellular stores using radioactive calcium-45 uptake experiment and Ca-free solution. On the specific receptor-expressing cell lines the antagonists inhibited the stimulating actions of the respective agonists, but had no effects by themselves. PACAP6-38, M65 and VIP6-28, which were described as antagonists in numerous studies in several model systems, act as agonists on TRG primary sensory neurons. Currently unknown receptors or splice variants linked to distinct signal transduction pathways might explain these differences.


Assuntos
Proteínas de Insetos/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Células Cultivadas , Cricetulus , Humanos , Camundongos , Ratos Wistar , Receptores Tipo II de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/agonistas , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/fisiologia , Imagens com Corantes Sensíveis à Voltagem
16.
Neuroscience ; 297: 95-104, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25841321

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a complex neurobehavioral disorder that is characterized by attention difficulties, impulsivity, and hyperactivity. A non-stimulant drug, atomoxetine (ATX), which is a selective noradrenaline reuptake inhibitor, is widely used for ADHD because it exhibits fewer adverse effects compared to conventional psychostimulants. However, little is known about the therapeutic mechanisms of ATX. ATX treatment significantly alleviated hyperactivity of pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP(-/-)) mice with C57BL/6J and 129S6/SvEvTac hybrid background. ATX also improved impaired novel object recognition memory and prepulse inhibition in PACAP(-/-) mice with CD1 background. The ATX-induced increases in extracellular noradrenaline and dopamine levels were significantly higher in the prefrontal cortex of PACAP(-/-) mice compared to wild-type mice with C57BL/6J and 129S6/SvEvTac hybrid background. These results suggest that ATX treatment-induced increases in central monoamine metabolism may be involved in the rescue of ADHD-related abnormalities in PACAP(-/-) mice. Our current study suggests that PACAP(-/-) mice are an ideal rodent model with predictive validity for the study of ADHD etiology and drug development. Additionally, the potential effects of differences in genetic background of PACAP(-/-) mice on behaviors are discussed.


Assuntos
Inibidores da Captação Adrenérgica/uso terapêutico , Cloridrato de Atomoxetina/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Hipercinese/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Inibição Pré-Pulso/efeitos dos fármacos , Estimulação Acústica , Análise de Variância , Animais , Monoaminas Biogênicas/metabolismo , Transtornos Cognitivos/genética , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Hipercinese/etiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Reconhecimento Psicológico/efeitos dos fármacos
17.
J Mol Neurosci ; 54(3): 331-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112419

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.


Assuntos
Dente Molar/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Ameloblastos/metabolismo , Animais , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Dentina/crescimento & desenvolvimento , Dentina/metabolismo , Durapatita/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Receptores Patched , Receptor Patched-1 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteína GLI1 em Dedos de Zinco
18.
Neuropharmacology ; 85: 538-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973707

RESUMO

We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.


Assuntos
Proteínas de Insetos/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Modelos Animais de Doenças , Orelha/patologia , Orelha/fisiopatologia , Edema , Feminino , Masculino , Camundongos , Microcirculação/efeitos dos fármacos , Microcirculação/fisiologia , Mostardeira , Peroxidase/metabolismo , Óleos de Plantas , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/agonistas , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/agonistas , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Vasodilatação/fisiologia
19.
J Mol Neurosci ; 54(3): 320-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24874580

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the female reproductive system. Both the peptide and its receptors have been shown in the placenta but its role in placental growth, especially its human aspects, remains unknown. The aim of the present study was to investigate the effects of PACAP on invasion, proliferation, cell survival, and angiogenesis of trophoblast cells. Furthermore, cytokine production was investigated in human decidual and peripheral blood mononuclear cells. For in vitro studies, human invasive proliferative extravillous cytotrophoblast (HIPEC) cells and HTR-8/SVneo human trophoblast cells were used. Both cell types were used for testing the effects of PACAP on invasion and cell survival in order to investigate whether the effects of PACAP in trophoblasts depend on the examined cell type. Invasion was studied by standardized invasion assay. PACAP increased proliferation in HIPEC cells, but not in HTR-8 cells. Cell viability was examined using MTT test, WST-1 assay, and annexin V/propidium iodide flow cytometry assay. Survival of HTR-8/SVneo cells was studied under oxidative stress conditions induced by hydrogen peroxide. PACAP as pretreatment, but not as co-treatment, significantly increased the number of surviving HTR-8 cells. Viability of HIPEC cells was investigated using methotrexate (MTX) toxicity, but PACAP1-38 could not counteract its toxic effect. Angiogenic molecules were determined both in the supernatant and the cell lysate by angiogenesis array. In the supernatant, we found that PACAP decreased the secretion of various angiogenic markers, such as angiopoietin, angiogenin, activin, endoglin, ADAMTS-1, and VEGF. For the cytokine assay, human decidual and peripheral blood lymphocytes were separated and treated with PACAP1-38. Th1 and Th2 cytokines were analyzed with CBA assay and the results showed that there were no significant differences in control and PACAP-treated cells. In summary, PACAP seems to play various roles in human trophoblast cells, depending on the cell type and microenvironmental influences.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Trofoblastos/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Decídua/citologia , Decídua/metabolismo , Feminino , Humanos , Linfócitos/metabolismo , Estresse Oxidativo , Gravidez
20.
J Mol Neurosci ; 54(3): 310-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24643519

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widespread neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. The diverse biological actions provide the background for the variety of deficits observed in mice lacking endogenous PACAP. PACAP-deficient mice display several abnormalities, such as sudden infant death syndrome (SIDS)-like phenotype, decreased cell protection, and increased risk of Parkinson's disease. However, the molecular and proteomic background is still unclear. Therefore, our aim was to investigate the differences in peptide and protein composition in the brains of PACAP-deficient and wild-type mice using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric (MS)-based proteomic analysis. Brains from PACAP-deficient mice were removed, and different brain areas (cortex, hippocampus, diencephalon, mesencephalon, brainstem, and cerebellum) were separated. Brain pieces were weighed, homogenized, and further processed for electrophoretic analysis. Our results revealed several differences in diencephalon and mesencephalon. The protein bands of interest were cut from the gel, samples were digested with trypsin, and the tryptic peptides were measured by matrix-assisted laser desorption ionization time of flight (MALDI TOF) MS. Results were analyzed by MASCOT Search Engine. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, and aspartate amino transferase. The altered expression of these enzymes might partially account for the decreased antioxidant and detoxifying capacity of PACAP-deficient mice accompanying the increased vulnerability of these animals. Our results provide novel insight into the altered biochemical processes in mice lacking endogenous PACAP.


Assuntos
Encéfalo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Proteoma/metabolismo , Animais , Encéfalo/enzimologia , Camundongos , Especificidade de Órgãos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA