RESUMO
PACAP (pituitary adenylate cyclase activating polypeptide) is a widespread neuropeptide with cytoprotective and anti-inflammatory effects. It plays a role in innate and adaptive immunity, but data are limited about gut-associated lymphoid tissue. We aimed to reveal differences in Peyer's patches between wild-type (WT) and PACAP-deficient (KO) mice. Peyer's patch morphology from young (3-months-old) and aging (12-15-months-old) mice was examined, along with flow cytometry to assess immune cell populations, expression of checkpoint molecules (PD-1, PD-L1, TIM-3, Gal-9) and functional markers (CD69, granzyme B, perforin) in CD3+, CD4+, and CD8+ T cells. We found slight differences between aging, but not in young, WT, and KO mice. In WT mice, aging reduced CD8+ T cell numbers frequency and altered checkpoint molecule expression (higher TIM-3, granzyme B; lower Gal-9, CD69). CD4+ T cell frequency was higher with similar checkpoint alterations, indicating a regulatory shift. In PACAP KO mice, aging did not change cell population frequencies but led to higher TIM-3, granzyme B and lower PD-1, PD-L1, Gal-9, and CD69 expression in CD4+ and CD8+ T cells, with reduced overall T cell activity. Thus, PACAP deficiency impacts immune dysfunction by altering checkpoint molecules and T cell functionality, particularly in CD8+ T cells, suggesting complex immune responses by PACAP, highlighting its role in intestinal homeostasis and potential implications for inflammatory bowel diseases.
Assuntos
Antígenos de Diferenciação de Linfócitos T , Camundongos Knockout , Nódulos Linfáticos Agregados , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Camundongos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Granzimas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Envelhecimento/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Camundongos Endogâmicos C57BL , Perforina/metabolismo , Perforina/genética , MasculinoRESUMO
Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic.
Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , AnimaisRESUMO
The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.
Assuntos
Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida , Hipóxia , Isquemia , Retina , Tomografia de Coerência Óptica , Animais , Camundongos , Isquemia/metabolismo , Isquemia/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Retina/metabolismo , Retina/patologia , Hipóxia/metabolismo , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/etiologia , Masculino , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos Endogâmicos C57BL , Fatores de TempoRESUMO
Evidence has been accumulating that elements of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) system are missing in non-chordate genomes, which is at odds with the partial sequence-, immunohistochemical-, and physiological data in the literature. Multilevel experiments were performed on the great pond snail (Lymnaea stagnalis) to explore the role of PACAP in invertebrates. Screening of neuronal transcriptome and genome data did not reveal homologs to the elements of vertebrate PACAP system. Despite this, immunohistochemical investigations with an anti-human PAC1 receptor antibody yielded a positive signal in the neuronal elements in the heart. Although Western blotting of proteins extracted from the nervous system found a relevant band for PACAP-38, immunoprecipitation and mass spectrometric analyses revealed no corresponding peptide fragments. Similarly to the effects reported in vertebrates, PACAP-38 significantly increased cAMP synthesis in the heart and had a positive ionotropic effect on heart preparations. Moreover, it significantly modulated the effects of serotonin and acetylcholine. Homologs to members of Cluster B receptors, which have shared common evolutionary origin with the vertebrate PACAP receptors, PTHRs, and GCGRs, were identified and shown not to be expressed in the heart, which does not support a potential role in the mediation of PACAP-induced effects. Our findings support the notion that the PACAP system emerged after the protostome-deuterostome divergence. Using antibodies against vertebrate proteins is again highlighted to have little/no value in invertebrate studies. The physiological effects of vertebrate PACAP peptides in protostomes, no matter how similar they are to those in vertebrates, should be considered non-specific.
RESUMO
Retinoblastoma represents the most prevalent malignant neoplasm affecting the eyes in childhood. The clear-cut origin of retinoblastoma has not yet been determined; however, based on experiments, it has been suggested that RB1 loss in cone photoreceptors causes retinoblastoma. Pituitary adenylate-cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide which has been shown to be affected in certain tumorous transformations, such as breast, lung, kidney, pancreatic, colon, and endocrine cancers. This study aimed to investigate potential changes in both PACAP38 and PAC1 receptor (PAC1R) expression in human retinoblastoma and the effect of PACAP38 administration on the survival of a human retinoblastoma cell line (Y-79). We analyzed human enucleation specimens removed because of retinoblastoma for PACAP38 and PAC1R immunostaining and the effect of PACAP38 on the survival of the Y-79 cell line. We described for the first time that human retinoblastoma cells from patients showed only perinuclear, dot-like immunopositivity for both PACAP38 and PAC1R, irrespective of laterality, genetic background, or histopathological features. Nanomolar (100 nM and 500 nM) PACAP38 concentrations had no effect on the viability of Y-79 cells, while micromolar (2 µM and 6 µM) PACAP38 significantly decreased tumor cell viability. These findings, along with general observations from animal studies showing that PACAP38 has strong anti-apoptotic, anti-inflammatory, and antioxidant effects on ocular tissues, together suggest that PACAP38 and its analogs are promising candidates in retinoblastoma therapy.
RESUMO
BACKGROUND: In 2008, members of the TEPARG provided first insights into the legal and ethical framework governing body donation in Europe. In 2012, a first update followed. This paper is now the second update on this topic and tries to extend the available information to many more European countries. METHODS: For this second update, we have asked authors from all European countries to contribute their national perspectives. By this enquiry, we got many contributions compiled in this paper. When we did not get a personal contribution, one of us (EB) searched the internet for relevant information. RESULTS: Perspectives on the legal and ethical framework governing body donation in Europe. CONCLUSIONS: We still see that a clear and rigorous legal framework is still unavailable in several countries. We found national regulations in 18 out of 39 countries; two others have at least federal laws. Several countries accept not only donated bodies but also utilise unclaimed bodies. These findings can guide policymakers in reviewing and updating existing laws and regulations related to body donation and anatomical studies.
Assuntos
Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Humanos , Cadáver , Europa (Continente) , Corpo HumanoRESUMO
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Assuntos
Hemostáticos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Hemostáticos/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismoRESUMO
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Morte Súbita do Lactente , Animais , Humanos , Lactente , Recém-Nascido , Pulmão/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Respiração , Morte Súbita do Lactente/genéticaRESUMO
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse functions. It occurs in high levels in the gonads suggesting a potential central role in reproduction. The aim of our study was to assess the effect of PACAP treatment during embryo vitrification on the developmental rate and the expression of the heparin-binding EGF-like growth factor gene (Hbegf). Mouse embryos, obtained from superovulated females were allocated into the four treatment groups. In EM1 and EM2, the embryos were prepared for vitrification in an Equilibration Solution that was supplemented with 1 or 2 µM PACAP1-38, respectively. The embyos in groups CM1 and CM2 were not treated prior to vitrification but were cultured in a medium supplemented with 1 or 2 µM PACAP1-38 after thawing. The Vitrified Control group consisted of embryos vitrified and thawed then cultured without PACAP1-38 treatment. A non-vitrified, non-treated Fresh Control group was also used. After 24 h of culture, the developmental rate of the embryos, as well as the relative expression level of the Hbegf gene, as determined by qPCR, were compared among groups. Higher developmental rate and Hbegf gene expression level were found in the embryos treated with a higher concentration of PACAP. These results indicate that PACAP treatment has a beneficial effect on the survival and development of vitrified/thawed mouse embryos.
Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Vitrificação , Feminino , Animais , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Embrião de Mamíferos/metabolismo , Reprodução , Criopreservação/veterinária , Criopreservação/métodosRESUMO
Despite the high probability of glaucoma-related blindness, its cause is not fully understood and there is no efficient therapeutic strategy for neuroprotection. Vascular factors have been suggested to play an important role in glaucoma development and progression. Previously, we have proven the neuroprotective effects of pituitary adenylate-cyclase-activating polypeptide (PACAP) eye drops in an inducible, microbeads model in rats that is able to reproduce many clinically relevant features of human glaucoma. In the present study, we examined the potential protective effects of PACAP1-38 on the retinal vasculature and the molecular changes in hypoxia. Ocular hypertension was induced by injection of microbeads into the anterior chamber, while control rats received PBS. PACAP dissolved in vehicle (1 µg/drop) or vehicle treatment was started one day after the injections for four weeks three times a day. Retinal degeneration was assessed with optical coherence tomography (OCT), and vascular and molecular changes were assessed by immunofluorescence labeling. HIF1-α and VEGF-A protein levels were measured by Western blot. OCT images proved severe retinal degeneration in the glaucomatous group, while PACAP1-38 eye drops had a retinoprotective effect. Vascular parameters were deteriorated and molecular analysis suggested hypoxic conditions in glaucoma. PACAP treatment exerted a positive effect against these alterations. In summary, PACAP could prevent the severe damage to the retina and its vasculature induced by ocular hypertension in a microbeads model.
Assuntos
Glaucoma , Hipertensão Ocular , Degeneração Retiniana , Animais , Ratos , Glaucoma/tratamento farmacológico , Hipóxia , Hipertensão Ocular/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Vasos RetinianosRESUMO
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Assuntos
Mieloma Múltiplo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Idoso , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Prognóstico , Citocinas/metabolismo , Biomarcadores , Microambiente TumoralRESUMO
Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.
Assuntos
Núcleo de Edinger-Westphal , Doença de Parkinson , Animais , Ratos , Gânglios da Base/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Núcleo de Edinger-Westphal/metabolismo , Levodopa/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Rotenona/metabolismo , Substância Negra/metabolismoRESUMO
Pituitary adenylate cyclase activating polypeptide (PACAP) is a conserved neuropeptide, which confers diverse anti-aging endocrine and paracrine/autocrine effects, including anti-apoptotic, anti-inflammatory and antioxidant action. The results of the in vivo and in vitro experiments show that increasing emphasis is being placed on the diagnostic/prognostic biomarker potential of this neuropeptide in a wide array of age-related diseases. After the initial findings regarding the presence and alteration of PACAP in different body fluids in physiological processes, an increasing number of studies have focused on the changes of its levels in various pathological conditions associated with advanced aging. Until 2016 - when the results of previous human studies were reviewed - a vast majority of the studies had dealt with age-related neurological diseases, like cerebrovascular and neurodegenerative diseases, multiple sclerosis, as well as some other common diseases in elderly such as migraine, traumatic brain injury and post-traumatic stress disorder, chronic hepatitis and nephrotic syndrome. The aim of this review is to summarize the old and the new results and highlight those 'classical' and emerging clinical fields in which PACAP may become subject to further investigation as a diagnostic and/or prognostic biomarker in age-related diseases.
Assuntos
Lesões Encefálicas Traumáticas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Idoso , Prognóstico , Envelhecimento , BiomarcadoresRESUMO
Glioblastoma multiforme (GBM) is a brain cancer with a poor prognosis that affects adults. This is a solid tumor characterized by a high rate of cell migration and invasion. The uncontrolled cell proliferation creates hypoxic niches in the tumor mass, which leads to the overexpression of hypoxiainducible factors (HIFs). This induces the activation of the vascular endothelial growth factor (VEGF), which is responsible for uncontrolled neoangiogenesis. Recent studies have demonstrated the antiinvasive effect of pituitary adenylate cyclaseactivating peptide (PACAP) in GBM. PACAP effects on the central nervous system are also mediated through the activitydependent neuroprotective protein (ADNP) activation. To date, no evidence exists regarding its role in GBM. Therefore, the ADNP involvement in GBM was investigated. By analyzing ADNP expression in a human GBM sample through confocal microscopy, a high ADNP immunoreactivity was detected in most glial cells and its predominant expression in hypoxic areas overexpressing HIF1α was highlighted. To investigate the role of ADNP on the HIFVEGF axis in GBM, a human U87MG GBM cell line was cultured with a hypoxic mimetic agent, deferoxamine, and cells were treated with the smallest active fragment of ADNP, known as NAP. The protein expression and distribution of HIF1α and VEGF was detected using western blot analysis and immunofluorescence assay. Results demonstrated that ADNP modulates the hypoxicangiogenic pathway in GBM cells by reducing VEGF secretion, detected through ELISA assay, as well as modulating their migration, assessed through wound healing assay. Although deeper investigation is necessary, the present study suggested that ADNP could be involved in PACAP antiinvasive effects in GBM.
Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Hipóxia , Proteínas do Tecido Nervoso , Proteínas de HomeodomínioRESUMO
BACKGROUND: Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. METHODS: Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. RESULTS: Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1ß. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. CONCLUSIONS: Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice.
Assuntos
Toxoplasma , Toxoplasmose , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Doenças Neuroinflamatórias , Toxoplasmose/complicações , Toxoplasmose/tratamento farmacológico , Fatores de Crescimento Neural , Inflamação/tratamento farmacológico , Mediadores da InflamaçãoRESUMO
The hypothalamic gonadotropin-releasing hormone (GnRH)-kisspeptin neuronal network regulates fertility in all mammals. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide isolated from the hypothalamus that is involved in the regulation of several releasing hormones and trop hormones. It is well-known that PACAP influences fertility at central and peripheral levels. However, the effects of PACAP on GnRH and kisspeptin neurons are not well understood. The present study investigated the integrity of the estrous cycle in PACAP-knockout (KO) mice. The number and immunoreactivity of GnRH (GnRH-ir) neurons in wild-type (WT) and PACAP KO female mice were determined using immunohistochemistry. In addition, the number of kisspeptin neurons was measured by counting kisspeptin mRNA-positive cells in the rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus (ARC) using the RNAscope technique. Finally, the mRNA and protein expression of estrogen receptor alpha (ERα) was also examined. Our data showed that the number of complete cycles decreased, and the length of each cycle was longer in PACAP KO mice. Furthermore, the PACAP KO mice experienced longer periods of diestrus and spent significantly less time in estrus. There was no difference in GnRH-ir or number of GnRH neurons. In contrast, the number of kisspeptin neurons was decreased in the ARC, but not in the R3PV, in PACAP KO mice compared to WT littermates. Furthermore, ERα mRNA and protein expression was decreased in the ARC, whereas in the R3PV region, ERα mRNA levels were elevated. Our results demonstrate that embryonic deletion of PACAP significantly changes the structure and presumably the function of the GnRH-kisspeptin neuronal network, influencing fertility.
Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Animais , Feminino , Camundongos , Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , RNA Mensageiro/metabolismoRESUMO
According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.
Assuntos
Depressão , Fluoxetina , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Masculino , Camundongos , Carbonato de Cálcio , Hormônio Liberador da Corticotropina/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Histonas , Oxigenases de Função Mista , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Tirosina , Urocortinas/metabolismoRESUMO
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated as a hypothalamic peptide. It has a widespread distribution in the body and has a diverse spectrum of actions. Among other processes, PACAP has been shown to be involved in reproduction. In this review we summarize findings related to the entire spectrum of female reproduction. PACAP is a regulatory factor in gonadal hormone production, influences follicular development and plays a role in fertilization and embryonic/placental development. Furthermore, PACAP is involved in hormonal changes during and after birth and affects maternal behavior. Although most data come from cell cultures and animal experiments, increasing number of evidence suggests that similar effects of PACAP can be found in humans. Among other instances, PACAP levels show changes in the serum during pregnancy and birth. PACAP is also present in the human follicular and amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate with the number of retrieved oocytes in hyperstimulated women. Human milk contains very high levels of PACAP compared to plasma levels, with colostrum showing the highest concentration, remaining steady thereafter for the first 7 months of lactation. All these data imply that PACAP has important functions in reproduction both under physiological and pathological conditions.
Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Placenta , Animais , Feminino , Desenvolvimento Fetal , Líquido Folicular , Gônadas , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , GravidezRESUMO
Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.
Assuntos
Fluoxetina , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Depressão/tratamento farmacológico , Depressão/genética , Epigênese Genética , Fluoxetina/farmacologia , Hipocampo , Histonas/genética , Lisina/genética , Masculino , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Córtex Pré-Frontal , Reprodutibilidade dos TestesRESUMO
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells. Among others, its effect on apoptosis can be detected in cerebellar granule cells against different toxic stimuli. Different neural cell types from the cerebral cortex are also prevented from cell death. PACAP also shows effects on cell death in cells belonging to the peripheral nervous system and protects both neural and non-neural cells of sensory organs. In addition, cell survival-promoting effect can be observed in different peripheral organ systems including cardiovascular, immune, respiratory, gastrointestinal, urinary, and reproductive systems. The studies summarized here indicate its noteworthy effect on cell death in different in vitro models, suggesting PACAP's potential therapeutic usage in several pathological conditions.