RESUMO
Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Transdução de Sinais , Células Estromais/patologia , Adipócitos/metabolismo , Inflamação/patologia , Microambiente Tumoral , Proteína Amiloide A Sérica/metabolismoRESUMO
While the results thus far demonstrate the clinical benefit of trastuzumab in breast cancer (BC), some patients do not respond to this drug. HER2 mRNA, alone or combined with other genes/biomarkers, has been proven to be a powerful predictive marker in several studies. Here, we provide evidence of the association between HER2 mRNA levels and the response to anti-HER2 treatment in HER2-positive BC patients treated with adjuvant trastuzumab and show that this association is independent of estrogen receptor (ER) tumor positivity. While HER2 mRNA expression was significantly correlated with HER2 protein levels in ER-negative tumors, no correlation was found in ER-positive tumors, and HER2 protein expression was not associated with relapse risk. Correlation analyses in the ER-positive subset identified ER activity as the pathway inversely associated with HER2 mRNA. Associations between HER2 levels and oncogene addiction, as well as between HER2 activation and trastuzumab sensitivity, were also observed in vitro in HER2-positive BC cell lines. In ER-positive but not ER-negative BC cells, HER2 transcription was increased by reducing ligand-dependent ER activity or inducing ER degradation. Accordingly, HER2 mRNA levels in patients were found to be inversely correlated with blood levels of estradiol, the natural ligand of ER that induces ER activation. Moreover, low estradiol levels were associated with a lower risk of relapse in HER2-positive BC patients treated with adjuvant trastuzumab. Overall, we found that HER2 mRNA levels, but not protein levels, indicate the HER2 dependency of tumor cells and low estrogen-dependent ER activity in HER2-positive tumors.
RESUMO
Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors. Modulation of the intestinal microbiota was reflected in tumors by impaired recruitment of CD4+ T cells and granzyme B-positive cells after trastuzumab treatment. Antibiotics caused reductions in dendritic cell (DC) activation and the release of IL12p70 upon trastuzumab treatment, a mechanism that was necessary for trastuzumab effectiveness in our model. In patients, lower α-diversity and lower abundance of Lachnospiraceae, Turicibacteraceae, Bifidobacteriaceae, and Prevotellaceae characterized nonresponsive patients (NR) compared with those who achieved pathologic complete response (R), similar to antibiotic-treated mice. The transfer of fecal microbiota from R and NR into mice bearing HER2-positive breast cancer recapitulated the response to trastuzumab observed in patients. Fecal microbiota ß-diversity segregated patients according to response and positively correlated with immune signature related to interferon (IFN) and NO2-IL12 as well as activated CD4+ T cells and activated DCs in tumors. Overall, our data reveal the direct involvement of the gut microbiota in trastuzumab efficacy, suggesting that manipulation of the gut microbiota is an optimal future strategy to achieve a therapeutic effect or to exploit its potential as a biomarker for treatment response. SIGNIFICANCE: Evidence of gut microbiota involvement in trastuzumab efficacy represents the foundation for new therapeutic strategies aimed at manipulating commensal bacteria to improve response in trastuzumab-resistant patients.See related commentary by Sharma, p. 1937 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2195/F1.large.jpg.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Receptor ErbB-2 , Trastuzumab/uso terapêutico , Animais , Antibacterianos/farmacologia , Neoplasias da Mama/imunologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linfócitos T CD4-Positivos , Ciclofosfamida/uso terapêutico , Citocinas/sangue , Células Dendríticas/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Granzimas , Humanos , Sistema Imunitário , Imunidade nas Mucosas , Interferons/metabolismo , Interleucina-12/metabolismo , Camundongos , Terapia Neoadjuvante , Óxido Nítrico/metabolismo , Estreptomicina/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vancomicina/farmacologiaRESUMO
Molecular analysis techniques such as gene expression analysis and proteomics have contributed greatly to our understanding of cancer heterogeneity. In prior studies, gene expression analysis was shown to stratify patient outcome on the basis of tumor-microenvironment associated genes. A specific gene expression profile, referred to as ECM3 (Extracellular Matrix Cluster 3), indicated poorer survival in patients with grade III tumors. In this work, we aimed to visualize the downstream effects of this gene expression profile onto the tissue, thus providing a spatial context to altered gene expression profiles. Using infrared spectroscopic imaging, we identified spectral patterns specific to the ECM3 gene expression profile, achieving a high spectral classification performance of 0.87 as measured by the area under the curve of the receiver operating characteristic curve. On a patient level, we correctly identified 20 out of 22 ECM3 group patients and 19 out of 20 non-ECM3 group patients by using this spectroscopic imaging-based classifier. By comparing pixels that were identified as ECM3 or non-ECM3 with H&E and IHC images, we were also able to observe an association between tissue morphology and the gene expression clusters, showing the ability of our method to capture broad outcome associated features from infrared images.
Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Imagem Molecular/métodos , Espectrofotometria Infravermelho/métodos , Transcriptoma , Feminino , Humanos , Prognóstico , Microambiente Tumoral/genéticaRESUMO
Progression of prostate cancer has been associated with EGFR and HER2 activation and to tumor-initiating cells contribution toward chemotherapy resistance. We investigated the efficacy of a dual intervention against EGFR and HER2 to deplete the tumor-initiating cells, optimize the chemotherapy management and prevent the progression of castration-resistant prostate cancer (CRPC) cells. Using DU145, PC3, and 22Rv1 CRPC cell lines, biochemical analysis revealed activation of EGFR, HER2, MAPK, and STAT3 in DU145 and 22Rv1, and AKT and SRC in DU145 and PC-3. pSTAT3 nuclear staining was observed in DU145 xenografts and in 12 out of 14 CRPC specimens. The in vivo dual targeting of ErbB receptors with Cetuximab and Trastuzumab combined with chemotherapy caused an effective antitumor response in DU145 xenografted mice displaying STAT3 activation; conversely PC-3 bearing mice experienced tumor relapse. The potentiating of in vivo cytotoxic effect in DU145 model was accompanied by a significant decrease of prostatosphere-forming capacity assessed in vitro on residual tumor cells. Additionally, combined treatment in vitro with Cetuximab, Trastuzumab and chemotherapy negatively affected DU145 and 22Rv1 sphere formation, suggesting the critical function of ErbB receptors for tumor-initiating cells proliferation; no effect on PC-3 clonogenic potential was observed, indicating that other receptors than EGFR and HER2 may sustain PC3 tumor-initiating cells. These findings provided the preclinical evidence that the dual inhibition of EGFR and HER2 by targeting tumor-initiating cells may improve the efficacy of the current chemotherapy regimen, bringing benefits especially to castration-resistant patients with activated STAT3, and preventing disease progression.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Docetaxel/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Through whole-transcriptome profiling of HER2+ breast carcinomas (BCs), we previously showed that those sensitive to trastuzumab are addicted to this oncoprotein and are enriched in immune pathways, raising the hypothesis that HER2 itself regulates immune cell recruitment. In the present study we investigated the relationship between HER2 activity and the pro-trastuzumab tumor immune milieu. Gene expression profiling and immunohistochemistry analysis of 53 HER2+ BCs showed that trastuzumab-sensitive tumors expressed significantly higher levels of chemokines involved in immune cell recruitment, with higher infiltration of T cells and monocytes, and higher levels of PD-1 ligands than tumors that do not benefit from trastuzumab. In vitro analysis in HER2+ BC cells revealed that CCL2 production was induced by HER2 stimulation with EGF/HRG via the PI3K-NF-kB axis, and down-modulated by HER2 inhibition with trastuzumab. CCL2 expression was higher in HER2+/ER- than HER2+/ER+ BC cell lines, and degradation of ER by fulvestrant induced an enhancement in NF-κB transcriptional activity and consequent CCL2 expression. Trastuzumab efficacy relied on CCL2 levels and monocytes present in the tumor microenvironment in FVB mice bearing HER2+ mammary carcinoma cells. HER2 signals were also found to sustain the expression of PD-1 ligands in tumor cells via the MEK pathway. Overall, our results support the concept that the activated HER2 oncogene regulates recruitment and activation of tumor infiltrating immune cells and trastuzumab activity by inducing CCL2 and PD-1 ligands and that ER activity negatively controls the HER2-driven pro-trastuzumab tumor microenvironment.
RESUMO
BACKGROUND: Optimising the selection of HER2-targeted regimens by identifying subsets of HER2-positive breast cancer (BC) patients who need more or less therapy remains challenging. We analysed BC samples before and after treatment with 1 cycle of trastuzumab according to the response to trastuzumab. METHODS: Gene expression profiles of pre- and post-treatment tumour samples from 17 HER2-positive BC patients were analysed on the Illumina platform. Tumour-associated immune pathways and blood counts were analysed with regard to the response to trastuzumab. HER2-positive murine models with differential responses to trastuzumab were used to reproduce and better characterise these data. RESULTS: Patients who responded to single-agent trastuzumab had basal tumour biopsies that were enriched in immune pathways, particularly the MHC-II metagene. One cycle of trastuzumab modulated the expression levels of MHC-II genes, which increased in patients who had a complete response on treatment with trastuzumab and chemotherapy. Trastuzumab increased the MHC-II-positive cell population, primarily macrophages, only in the tumour microenvironment of responsive mice. In patients who benefited from complete trastuzumab therapy and in mice that harboured responsive tumours circulating neutrophil levels declined, but this cell subset rose in nonresponsive tumours. CONCLUSIONS: Short treatment with trastuzumab induces local and systemic immunomodulation that is associated with clinical outcomes.
Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fatores Imunológicos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/farmacologia , Animais , Neoplasias da Mama/imunologia , Feminino , Genes MHC da Classe II , Humanos , Antígeno Ki-67/análise , Camundongos , Receptor ErbB-2/análise , Transcriptoma , Trastuzumab/uso terapêutico , Microambiente TumoralRESUMO
Exosomes-secreted microRNAs play an important role in metastatic spread. During this process breast cancer cells acquire the ability to transmigrate through blood vessels by inducing changes in the endothelial barrier. We focused on miR-939 that is predicted to target VE-cadherin, a component of adherens junction involved in vessel permeability. By in silico analysis miR-939 was found highly expressed in the basal-like tumor subtypes and in our cohort of 63 triple-negative breast cancers (TNBCs) its expression significantly interacted with lymph node status in predicting disease-free survival probability. We demonstrated, in vitro, that miR-939 directly targets VE-cadherin leading to an increase in HUVECs monolayer permeability. MDA-MB-231 cells transfected with a miR-939 mimic, released miR-939 in exosomes that, once internalized in endothelial cells, favored trans-endothelial migration of MDA-MB-231-GFP cells by the disruption of the endothelial barrier. Notably, when up taken in endothelial cells exosomes caused VE-cadherin down-regulation specifically through miR-939 as we demonstrated by inhibiting miR-939 expression in exosomes-releasing TNBC cells. Together, our data indentify an extracellular pro-tumorigenic role for tumor-derived, exosome-associated miR-939 that can explain its association with worse prognosis in TNBCs.
Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Migração Transendotelial e Transepitelial , Neoplasias de Mama Triplo Negativas/metabolismo , Antígenos CD/genética , Caderinas/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo , Exossomos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , MicroRNAs/genética , Metástase Neoplásica , Comunicação Parácrina , Permeabilidade , Modelos de Riscos Proporcionais , Transdução de Sinais , Fatores de Tempo , Transfecção , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Recent clinical data indicate a synergistic therapeutic effect between trastuzumab and taxanes in neoadjuvantly treated HER2-positive breast cancer (BC) patients. In HER2+ BC experimental models and patients, we investigated whether this synergy depends on the ability of drug-induced stress to improve NK cell effectiveness and thus trastuzumab-mediated ADCC. HER2+ BC cell lines BT474 and MDAMB361 treated with docetaxel showed up-modulation of NK activator ligands both in vitro and in vivo, accompanied by a 15-40% increase in in vitro trastuzumab-mediated ADCC; antibodies blocking the NKG2D receptor significantly reduced this enhancement. NKG2D receptor expression was increased by docetaxel treatment in circulating and splenic NK cells from mice xenografted with tumor cells, an increase related to expansion of the CD11b+Ly6G+ cell population. Accordingly, NK cells derived from HER2+ BC patients after treatment with taxane-containing therapy expressed higher levels of NKG2D receptor than before treatment. Moreover, plasma obtained from these patients recapitulated the modulation of NKG2D on healthy donors' NK cells, improving their trastuzumab-mediated activity in vitro. This enhancement occurred mainly using plasma from patients with low NKG2D basal expression. Our results indicate that taxanes increase tumor susceptibility to ADCC by acting on tumor and NK cells, and suggest that taxanes concomitantly administered with trastuzumab could maximize the antibody effect, especially in patients with low basal immune effector cytotoxic activity.
Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células Matadoras Naturais/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Docetaxel , Sinergismo Farmacológico , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos SCID , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxoides/administração & dosagem , Taxoides/farmacologia , Trastuzumab/administração & dosagem , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Altered degradation and deposition of extracellular matrix are hallmarks of tumor progression and response to therapy. From a microarray supervised analysis on a dataset of chemotherapy-treated breast carcinoma patients, maspin, a member of the serpin protease inhibitor family, has been the foremost variable identified in non-responsive versus responsive tumors. Accordingly, in a series of 52 human breast carcinomas, we detected high maspin expression in tumors that progressed under doxorubicin (DXR)-based chemotherapy. Our analysis of the role of maspin in response to chemotherapy in human MCF7 and MDAMB231 breast and SKOV3 ovarian carcinoma cells transfected to overexpress maspin and injected into mice showed that maspin overexpression led to DXR resistance through the maspin-induced collagen-enriched microenvironment and that an anti-maspin neutralizing monoclonal antibody reversed the collagen-dependent DXR resistance. Impaired diffusion and decreased DXR activity were also found in tumors derived from Matrigel-embedded cells, where abundant collagen fibers characterize the tumor matrix. Conversely, liposome-based DXR reached maspin-overexpressing tumor cells despite the abundant extracellular matrix and was more efficient in reducing tumor growth. Our results identify maspin-induced accumulation of collagen fibers as a cause of disease progression under DXR chemotherapy for breast cancer. Use of a more hydrophilic DXR formulation or of a maspin inhibitor in combination with chemotherapy holds the promise of more consistent responses to maspin-overexpressing tumors and dense-matrix tumors in general.