Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(8): 4266-4274, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348770

RESUMO

Despite extensive research on the nucleation and growth of calcium oxalate (CaOx) crystals, there are still several challenges and unknowns that remain. In particular, the role of trace metal elements in the promotion or inhibition of CaOx crystals is not well understood. In the present study, in situ graphene liquid cell transmission electron microscopy (in situ GLC TEM) was used to observe real-time, nanoscale transformations of CaOx crystals in the presence of nickel ions (Ni2+). The results showed that Ni2+ form Ni-water complexes, acting as a shape-directing species, generating a unique morphology and altering growth kinetics. Transient adsorption of Ni-water complexes resulted in a metastable phase formation of calcium oxalate trihydrate. Atomistic molecular dynamics simulations confirmed that Ni2+ acts as a weak inhibitor which slows down the CaOx crystallization, elucidating that Ni2+ impacts small-sized CaOx clusters by bringing more water into the clusters. This work highlighted the intricacies behind the effect of Ni2+ on CaOx biomineralization that were made possible to discern using in situ GLC TEM.

2.
ACS Nano ; 16(11): 18307-18314, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346650

RESUMO

Self-assembled peptide fibrils have been used extensively to template the organization of metal nanoparticles in a one-dimensional (1D) array. It has been observed that the formation of the 1D arrays with a width of a single or few nanoparticles (viz. 20 nm diameter) is only possible if the templating fibers have comparable diameters (viz. ≤20 nm). Accordingly, until today, all the peptide-based templates enabling such 1D arrays have very low persistence lengths, a property that depends strongly on the diameter of the template, owing to the inherent flexibility of only a few nanometer-wide fibers. Here, we demonstrate the formation of high persistence length 1D arrays templated by a short self-assembling peptide fibril with an asymmetrically distributed charged surface. The asymmetric nature of the peptide fibril allows charge-dependent deposition of the nanoparticles only to the part of the fiber with complementary charges, and the rest of the fibril surface remains free of nanoparticles. Consequently, fibers with a much higher diameter, which will have a higher persistence length, are able to template single or few nanoparticle-wide 1D arrays. Detailed microscopy, molecular dynamics simulations, and crystal structure analysis provide molecular-level insights into fiber asymmetry and its interactions with diverse nanostructures such as gold and magnetic nanoparticles. This study will afford an alternative paradigm for high persistence length 1D array fabrication comparable to DNA nanotechnology and lithography but with tremendous cost-effectiveness.


Assuntos
Nanopartículas Metálicas , Nanofibras , Nanoestruturas , Propriedades de Superfície , Ouro/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Peptídeos/química
3.
Adv Sci (Weinh) ; 9(4): e2103098, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894089

RESUMO

The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity-based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer-peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC-based HMAs.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular , Nanopartículas/metabolismo , Peptídeos/metabolismo , Linhagem Celular Tumoral , Dendrímeros/metabolismo , Humanos , Fenômenos Físicos , Polietilenoglicóis/metabolismo
4.
ACS Nano ; 15(6): 10342-10346, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34029473

RESUMO

We use molecular dynamics simulations to show that the Venturi-Bernoulli effect can pump liquids at the nanoscale. In particular, we found that water flowing in an open reservoir close to a static substrate experiences a friction which converts its kinetic energy into breaking of hydrogen bonds. This water flowing under friction acquires a lower density, which can be used in pumping fluids positioned under a nanoporous substrate.

5.
ACS Nano ; 15(4): 6678-6683, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33818078

RESUMO

In cellular environments, metabolites, peptides, proteins, and other biomolecules can self-assemble into planar and fibrilar molecular crystals. We use atomistic molecular dynamics simulations to show that such biomolecular crystals coupled with low-dimensional materials can form stable hybrid superstructures. We discuss enantiopure and racemic TRP and PHE amino acid crystals adsorbed on or intercalated between graphene, phosphorene, and carbon nanotubes. While racemic biomolecular crystals tend to stay straight in solutions and when adsorbed on flat and cylindrical nanosurfaces, enantiopure crystals undergo twisting. Mixed material properties of these hybrid superstructures can be attractive in many applications.


Assuntos
Grafite , Nanotubos de Carbono , Aminoácidos , Simulação de Dinâmica Molecular , Peptídeos
6.
ACS Appl Mater Interfaces ; 12(50): 56310-56318, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33269903

RESUMO

We report the mechanism of hydrogel formation in dilute aqueous solutions (>15 mg/mL) by 2 nm metal-organic cages (MOCs). Experiments and all-atom simulations confirm that with the addition of small electrolytes, the MOCs self-assemble into 2D nanosheets via counterion-mediated attraction because of their unique molecular structure and charge distribution as well as σ-π interactions. The stiff nanosheets are difficult to bend into 3-D hollow, spherical blackberry type structures, as observed in many other macroion systems. Instead, they stay in solution and their very large excluded volumes lead to gelation at low (∼1.5 wt %) MOC concentrations, with additional help from hydrophobic and partial π-π interactions similar to the gelation of graphene oxides.

7.
mSystems ; 5(4)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817387

RESUMO

The analysis of systematically collected data for coronavirus disease 2019 (COVID-19) infectivity and death rates has revealed, in many countries around the world, a typical oscillatory pattern with a 7-day (circaseptan) period. Additionally, in some countries, 3.5-day (hemicircaseptan) and 14-day periodicities have also been observed. Interestingly, the 7-day infectivity and death rate oscillations are almost in phase, showing local maxima on Thursdays/Fridays and local minima on Sundays/Mondays. These observations are in stark contrast to a known pattern correlating the death rate with the reduced medical staff in hospitals on the weekends. While we cannot exclude the possibility that a significant portion of the observed oscillations is associated with the reporting of the individual cases, other reasons might contribute at least partly to these data. One possible hypothesis addressing these observations is that they reflect gradually increasing stress with the progressing week, which can trigger the higher death rates on Thursdays/Fridays. Moreover, assuming the weekends provide the likely time for new infections, the maximum number of new cases might fall, again, on Thursdays/Fridays. These observations deserve further study to provide a better understanding of COVID-19 dynamics.IMPORTANCE The infectivity and death rates for COVID-19 have been observed in many countries around the world as well as in the collective data of the whole world. These oscillations show distinct circaseptan periodicity, which could be associated with numerous biological reasons as well as with improper reporting of the data collected. Since very different results are observed in different countries and even continents, such as Sweden (very significant oscillations) or India (almost no oscillations), these data provide a very important message about different conditions under which the disease is spread or is reported, which, in turn, could serve as guidance tools in future epidemics. It is necessary that follow-up studies track the observed differences and fully reliably address their origins.

8.
ACS Nano ; 14(2): 1694-1706, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31944667

RESUMO

Most natural biomolecules may exist in either of two enantiomeric forms. Although in nature, amino acid biopolymers are characterized by l-type homochirality, incorporation of d-amino acids in the design of self-assembling peptide motifs has been shown to significantly alter enzyme stability, conformation, self-assembly behavior, cytotoxicity, and even therapeutic activity. However, while functional metabolite assemblies are ubiquitous throughout nature and play numerous important roles including physiological, structural, or catalytic functions, the effect of chirality on the self-assembly nature and function of single amino acids is not yet explored. Herein, we investigated the self-assembly mechanism of amyloid-like structure formation by two aromatic amino acids, phenylalanine (Phe) and tryptophan (Trp), both previously found as extremely important for the nucleation and self-assembly of aggregation-prone peptide regions into functional structures. Employing d-enantiomers, we demonstrate the critical role that amino acid chirality plays in their self-assembly process. The kinetics and morphology of pure enantiomers is completely altered upon their coassembly, allowing to fabricate different nanostructures that are mechanically more robust. Using diverse experimental techniques, we reveal the different molecular arrangement and self-assembly mechanism of the dl-racemic mixtures that resulted in the formation of advanced supramolecular materials. This study provides a simple yet sophisticated engineering model for the fabrication of attractive materials with bionanotechnological applications.


Assuntos
Fenilalanina/síntese química , Triptofano/síntese química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , Fenilalanina/química , Estereoisomerismo , Propriedades de Superfície , Triptofano/química
9.
Adv Mater ; 31(10): e1807285, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644148

RESUMO

Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal-reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self-assemble into T4P-like nanofibers. Here, it is reported that the T4P-like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide-metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus-formed peptide-AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single-fiber level up, and substrate-selective adhesion. Exploring its potential applications, it is demonstrated that the peptide-AuNPs nanocomposite can act as a reusable catalytic coating or form self-supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P-inspired biometallic material.


Assuntos
Nanopartículas Metálicas/química , Nanocompostos/química , Nanofibras/química , Peptídeos/química , Materiais Biocompatíveis/química , Condutividade Elétrica , Fímbrias Bacterianas , Geobacter
10.
J Am Chem Soc ; 141(1): 363-369, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532955

RESUMO

The ensemble of native, folded state was once considered to represent the global energy minimum of a given protein sequence. More recently, the discovery of the cross-ß amyloid state revealed that deeper energy minima exist, often associated with pathogenic, fibrillar deposits, when the concentration of proteins reaches a critical value. Fortunately, a sizable energy barrier impedes the conversion from native to pathogenic states. However, little is known about the structure of the related transition state. In addition, there are indications of polymorphism in the amyloidogenic process. Here, we report the first evidence of the conversion of metastable cross-α-helical crystals to thermodynamically stable cross-ß-sheet-like fibrils by a de novo designed heptapeptide. Furthermore, for the first time, we demonstrate at atomic resolution that the flip of a peptide plane from a type I to a type II' turn facilitates transformation to cross-ß structure and assembly of a dry steric zipper. This study establishes the potential of a peptide turn, a common protein secondary structure, to serve as a principal gatekeeper between a native metastable folded state and the amyloid state.


Assuntos
Amiloide/química , Agregados Proteicos , Cinética , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
11.
Chem Commun (Camb) ; 54(36): 4561-4564, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29663008
12.
Chem Soc Rev ; 47(11): 3849-3860, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29645040

RESUMO

Nanomedicines are typically formed by nanocarriers which can deliver in a targeted manner drugs poorly soluble in blood, increase their therapeutic activities, and reduce their side effects. Many tested nanomedicines are formed by lipids, polymers, and other amphiphilic molecules isolated or self-assembled into various complexes and micelles, functionalized nanoparticles, and other bio-compatible composite materials. Here, we show how atomistic molecular dynamics simulations can be used to characterize and optimize the structure, stability, and activity of selected nanomedicines. We discuss modeling of nanomedicines based on micelles, which can deliver selected therapeutic agents, and nanoparticles designed to act like large drugs. We show how to model nanomedicines interacting with lipid membranes, viruses, and amyloid fibrils.


Assuntos
Micelas , Nanomedicina , Nanopartículas/química , Amiloide/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Vírus/química
13.
ACS Nano ; 12(1): 317-326, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29257866

RESUMO

Designing supramolecular nanotubes (SNTs) with distinct dimensions and properties is highly desirable, yet challenging, since structural control strategies are lacking. Furthermore, relatively complex building blocks are often employed in SNT self-assembly. Here, we demonstrate that symmetric bolaamphiphiles having a hydrophobic core comprised of two perylene diimide moieties connected via a bipyridine linker and bearing polyethylene glycol (PEG) side chains can self-assemble into diverse molecular nanotubes. The structure of the nanotubes can be controlled by assembly conditions (solvent composition and temperature) and a PEG chain length. The resulting nanotubes differ both in diameter and cross section geometry, having widths of 3 nm (triangular-like cross-section), 4 nm (rectangular), and 5 nm (hexagonal). Molecular dynamics simulations provide insights into the stability of the tubular superstructures and their initial stages of self-assembly, revealing a key role of oligomerization via side-by-side aromatic interactions between bis-aromatic cores. Probing electronic and photonic properties of the nanotubes revealed extended electron delocalization and photoinduced charge separation that proceeds via symmetry breaking, a photofunction distinctly different from that of the fibers assembled from the same molecules. A high degree of structural control and insights into SNT self-assembly advance design approaches toward functional organic nanomaterials.

14.
Nat Chem ; 9(4): 333-340, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28485398

RESUMO

The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

15.
Acc Chem Res ; 47(9): 2837-45, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25098651

RESUMO

Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.


Assuntos
Modelos Químicos , Teoria Quântica , Água/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Proteínas/química , Eletricidade Estática , Temperatura
16.
Med Phys ; 29(3): 319-24, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11929014

RESUMO

A study of the x-ray sensitivity of amorphous selenium (a-Se) for digital mammography has been performed. A uniform layer of a-Se was deposited on a glass substrate with electrodes on both surfaces. The deposition procedure was identical to that used for a-Se flat-panel detectors. A high voltage was applied to the top surface of the a-Se layer in order to establish an electric field E(Se). Then the sample was exposed to x rays with 27 kVp spectra generated from an x-ray tube with a molybdenum (Mo) target. The mean x-ray energy of the spectrum used was approximately 16.6 keV. The x-ray current generated by the a-Se layer was measured as a function of E(Se). From the current measurement and the estimation of total x-ray energy absorbed in the a-Se, the energy required to create one electron-hole pair (EHP), W, was determined as a function of E(Se). It was found that at the most commonly used E(Se) of 10 V/microm, W was measured as 64 eV. This is considerably higher than the widely accepted typical value of W = 50 eV measured at higher x-ray photon energies (e.g., 50 keV). The dependence of W as a function of E(Se) can be best fitted using the empirical expression of E(Se)-gamma. This relationship is consistent with the results obtained at higher x-ray energies. This article provides an accurate measurement of x-ray sensitivity of a-Se at mammographic energies independent of detector operation, such as the most recently developed flat-panel detectors. The results will be a useful tool for investigation and optimization of a-Se-based x-ray imaging detectors, such as determination of pixel fill-factor and optimal E(Se) during operation.


Assuntos
Mamografia/métodos , Selênio , Elétrons , Feminino , Vidro , Humanos , Fótons , Sensibilidade e Especificidade , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA