Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Struct Biol ; 212(3): 107645, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045383

RESUMO

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for more than 140 enzymes. This coenzyme plays a pivotal role in catalysis of various enzymatic reactions that are critical for the survival of organisms. Entamoeba histolytica depends on the uptake of pyridoxal (PL), a B6 vitamer from the external environment which is then phosphorylated by pyridoxal kinase (EhPLK) to form PLP via the salvage pathway. E. histolytica cannot synthesise vitamin B6de-novo, and also lacks pyridoxine 5'-phosphate oxidase, a salvage pathway enzyme required to produce PLP from pyridoxine phosphate (PNP) and pyridoxamine phosphate (PMP). Analysing the importance of PLK in E. histolytica, we have determined the high-resolution crystal structures of the dimeric pyridoxal kinase in apo, ADP-bound, and PLP-bound states. These structures provided a snapshot of the transition state and help in understanding the reaction mechanism in greater detail. The EhPLK structure significantly differed from the human homologue at its PLP binding site, and the phylogenetic study also revealed its divergence from human PLK. Further, gene regulation of EhPLK using sense and antisense RNA showed that any change in optimal level is harmful to the pathogen. Biochemical and in vivo studies unveiled EhPLK to be essential for this pathogen, while the molecular differences with human PLK structure can be exploited for the structure-guided design of EhPLK inhibitors.


Assuntos
Entamoeba histolytica/metabolismo , Piridoxal Quinase/metabolismo , Sítios de Ligação/fisiologia , Catálise , Fosforilação/fisiologia , Filogenia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Vitamina B 6/metabolismo
2.
Biochem J ; 475(21): 3493-3509, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315069

RESUMO

The helicase-primase interaction is an essential event in DNA replication and is mediated by the highly variable C-terminal domain of primase (DnaG) and N-terminal domain of helicase (DnaB). To understand the functional conservation despite the low sequence homology of the DnaB-binding domains of DnaGs of eubacteria, we determined the crystal structure of the helicase-binding domain of DnaG from Mycobacterium tuberculosis (MtDnaG-CTD) and did so to a resolution of 1.58 Å. We observed the overall structure of MtDnaG-CTD to consist of two subdomains, the N-terminal globular region (GR) and the C-terminal helical hairpin region (HHR), connected by a small loop. Despite differences in some of its helices, the globular region was found to have broadly similar arrangements across the species, whereas the helical hairpins showed different orientations. To gain insights into the crucial helicase-primase interaction in M. tuberculosis, a complex was modeled using the MtDnaG-CTD and MtDnaB-NTD crystal structures. Two nonconserved hydrophobic residues (Ile605 and Phe615) of MtDnaG were identified as potential key residues interacting with MtDnaB. Biosensor-binding studies showed a significant decrease in the binding affinity of MtDnaB-NTD with the Ile605Ala mutant of MtDnaG-CTD compared with native MtDnaG-CTD. The loop, connecting the two helices of the HHR, was concluded to be largely responsible for the stability of the DnaB-DnaG complex. Also, MtDnaB-NTD showed micromolar affinity with DnaG-CTDs from Escherichia coli and Helicobacter pylori and unstable binding with DnaG-CTD from Vibrio cholerae The interacting domains of both DnaG and DnaB demonstrate the species-specific evolution of the replication initiation system.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Primase/metabolismo , DnaB Helicases/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Cristalografia por Raios X , DNA Primase/química , DNA Primase/genética , DnaB Helicases/química , DnaB Helicases/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Mycobacterium tuberculosis/genética , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
3.
Acta Crystallogr D Struct Biol ; 73(Pt 8): 672-682, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28777082

RESUMO

The versatility in the recognition of various interacting proteins by the SH3 domain drives a variety of cellular functions. Here, the crystal structure of the C-terminal SH3 domain of myosin IB from Entamoeba histolytica (EhMySH3) is reported at a resolution of 1.7 Šin native and PEG-bound states. Comparisons with other structures indicated that the PEG molecules occupy protein-protein interaction pockets similar to those occupied by the peptides in other peptide-bound SH3-domain structures. Also, analysis of the PEG-bound EhMySH3 structure led to the recognition of two additional pockets, apart from the conventional polyproline and specificity pockets, that are important for ligand interaction. Molecular-docking studies combined with various comparisons revealed structural similarity between EhMySH3 and the SH3 domain of ß-Pix, and this similarity led to the prediction that EhMySH3 preferentially binds targets containing type II-like PXXP motifs. These studies expand the understanding of the EhMySH3 domain and provide extensive structural knowledge, which is expected to help in predicting the interacting partners which function together with myosin IB during phagocytosis in E. histolytica infections.


Assuntos
Entamoeba histolytica/metabolismo , Miosina Tipo I/metabolismo , Polietilenoglicóis/metabolismo , Proteínas de Protozoários/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Cristalografia por Raios X , Entamoeba histolytica/química , Entamebíase/parasitologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Miosina Tipo I/química , Polietilenoglicóis/química , Ligação Proteica , Multimerização Proteica , Proteínas de Protozoários/química , Alinhamento de Sequência
4.
Sci Rep ; 6: 31181, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499105

RESUMO

Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of ß-clamp from H. pylori (Hpß-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial ß-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of ß-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of ß-clamp binding regions in them and validated by SPR studies. Hpß-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of ß-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with ß-clamp.


Assuntos
Proteínas de Bactérias/química , DNA Ligases/química , Helicobacter pylori/enzimologia , Cristalografia por Raios X , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
5.
Biochem J ; 467(2): 345-52, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25723849

RESUMO

Ubiquitylation regulates a multitude of biological processes and this versatility stems from the ability of ubiquitin (Ub) to form topologically different polymers of eight different linkage types. Whereas some linkages have been studied in detail, other linkage types including Lys33-linked polyUb are poorly understood. In the present study, we identify an enzymatic system for the large-scale assembly of Lys33 chains by combining the HECT (homologous to the E6-AP C-terminus) E3 ligase AREL1 (apoptosis-resistant E3 Ub protein ligase 1) with linkage selective deubiquitinases (DUBs). Moreover, this first characterization of the chain selectivity of AREL1 indicates its preference for assembling Lys33- and Lys11-linked Ub chains. Intriguingly, the crystal structure of Lys33-linked diUb reveals that it adopts a compact conformation very similar to that observed for Lys11-linked diUb. In contrast, crystallographic analysis of Lys33-linked triUb reveals a more extended conformation. These two distinct conformational states of Lys33-linked polyUb may be selectively recognized by Ub-binding domains (UBD) and enzymes of the Ub system. Importantly, our work provides a method to assemble Lys33-linked polyUb that will allow further characterization of this atypical chain type.


Assuntos
Lisina/química , Poliubiquitina/química , Dobramento de Proteína , Ubiquitina-Proteína Ligases/química , Animais , Humanos , Lisina/genética , Lisina/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
PLoS One ; 7(1): e29694, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253760

RESUMO

Sodium dodecyl sulphate (SDS), an anionic surfactant that mimics some characteristics of biological membrane has also been found to induce aggregation in proteins. The present study was carried out on 25 diverse proteins using circular dichroism, fluorescence spectroscopy, dye binding assay and electron microscopy. It was found that an appropriate molar ratio of protein to SDS readily induced amyloid formation in all proteins at a pH below two units of their respective isoelectric points (pI) while no aggregation was observed at a pH above two units of pI. We also observed that electrostatic interactions play a leading role in the induction of amyloid. This study can be used to design or hypothesize a molecule or drug, which may counter act the factor responsible for amyloid formation.


Assuntos
Amiloide/metabolismo , Proteínas/metabolismo , Dodecilsulfato de Sódio/farmacologia , Animais , Benzotiazóis , Dicroísmo Circular , Fluorescência , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ponto Isoelétrico , Luz , Modelos Biológicos , Nefelometria e Turbidimetria , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/ultraestrutura , Espalhamento de Radiação , Análise Espectral , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA