Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 223, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402637

RESUMO

BACKGROUND: Misfolding and aggregation of amyloid ß (Aß), along with neurofibrillary tangles consisting of aggregated Tau species, are pathological hallmarks of Alzheimer's disease (AD) onset and progression. In this study, we hypothesized the clearance of Aß aggregates from the brain and body into the gut. METHODS: To investigate this, we used surface-based fluorescence intensity distribution analysis (sFIDA) to determine the Aß aggregate concentrations in feces from 26 AD patients and 31 healthy controls (HC). RESULTS: Aß aggregates were detectable in human feces and their concentrations were elevated in AD patients compared to HC (specificity 90.3%, sensitivity 53.8%). CONCLUSION: Thus, fecal Aß aggregates constitute a non-invasive biomarker candidate for diagnosing AD. Whether digestion-resistant Aß aggregates in feces are secreted via the liver and bile or directly from the enteric neuronal system remains to be elucidated.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Fezes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fezes/química , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Estudo de Prova de Conceito , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Agregados Proteicos
2.
Sci Rep ; 14(1): 19556, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174611

RESUMO

Islet amyloid polypeptide (IAPP) is co-secreted with insulin from pancreatic ß-cells. Its oligomerisation is regarded as disease driving force in type 2 diabetes (T2D) pathology. Up to now, IAPP oligomers have been detected in affected tissues. IAPP oligomer concentrations in blood have not been analysed so far. Using the IAPP single-oligomer-sensitive and monomer-insensitive surface-based fluorescence intensity distribution analysis (sFIDA) technology, levels of IAPP oligomers in blood plasma from healthy controls and people with T2D in different disease stages where determined. Subsequently, the level of IAPP oligomerisation was introduced as the ratio between the IAPP oligomers determined with sFIDA and the total IAPP concentration determined with ELISA. Highest oligomerisation levels were detected in plasma of people with T2D without late complication and without insulin therapy. Their levels stand out significantly from the control group. Healthy controls presented with the lowest oligomerisation levels in plasma. In people with T2D without complications, IAPP oligomerisation levels correlated with disease duration. The results clearly demonstrate that IAPP oligomerisation in insulin-naïve patients correlates with duration of T2D. Although a correlation per se does not identify, which is cause and what is consequence, this result supports the hypothesis that IAPP aggregation is the driving factor of T2D development and progression. The alternative and conventional hypothesis explains development of T2D with increasing insulin resistance causing exhaustion of pancreatic ß-cells due to over-secretion of insulin, and thus IAPP, too, resulting in subsequent IAPP aggregation and fibril deposition in the pancreas. Further experiments and comparative analyses with primary tissues are warranted.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Multimerização Proteica , Adulto , Estudos de Casos e Controles , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
3.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666085

RESUMO

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

4.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238187

RESUMO

Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer's disease (AD), soluble and toxic amyloid-ß (Aß) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aß oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aß oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aß1-42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aß1-42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods.

5.
NPJ Parkinsons Dis ; 8(1): 68, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655068

RESUMO

The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA