Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes (Basel) ; 15(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39202415

RESUMO

Four dominant coat color phenotypes are found in fallow deer (Dama dama). Brown is the most common. Black, menil, and white occur with varying frequencies. In order to gain insights into the molecular genetic background of these phenotypes, 998 fallow animals (772 brown, 62 black, 126 menil, and 38 white) were examined for mutations in the ASIP, MC1R, TYR, and SLC45A2 genes. In ASIP, two mutations (ASIP-M-E2, located at the boundary from exon 2 to intron 2; and ASIP-M-E3, an InDel of five nucleotides) were found, leading to black fallow deer being either homozygous or heterozygous in combination. There were also two mutations found in MC1R. Whereby the mutation MC1R-M1 (leucine to proline, L48P) homozygous leads to a white coat, while the mutation MC1R-M2 (glycine to aspartic acid, G236D) homozygous is associated with the menil phenotype. When both mutations occur together in a heterozygous character state, it results in a menil coat. Since the mutations in the two genes are only present alternatively, 36 genotypes can be identified that form color clusters to which all animals can be assigned. No mutations were found in the TYR and SLC45A2 genes. Our investigations demonstrate that the four dominant coat colors in fallow deer can be explained by ASIP and MC1R mutations only.


Assuntos
Proteína Agouti Sinalizadora , Cervos , Fenótipo , Receptor Tipo 1 de Melanocortina , Animais , Cervos/genética , Receptor Tipo 1 de Melanocortina/genética , Proteína Agouti Sinalizadora/genética , Mutação , Cor de Cabelo/genética , Pigmentação/genética
2.
Pneumologie ; 78(1): 47-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37827498

RESUMO

American Bashkir Curly Horses are claimed to be hypoallergenic, but this has not been clinically proven. In the present study, the effect of exposure to Curly Horses was investigated in 141 patients allergic to horses by measuring their lung function and nasal patency during Curly Horse contact. Continuous contact with Curly Horses, including riding and brushing, decreased the allergic riders' reactivity as measured by FEV1, PEF, and PNIF. Subsequent visits (up to 40 or more hours of riding) further reduced reactivity to the Curly Horses. Allergic events to horses occurred only in 72 out of 1312 riding hours, mainly in the first ten riding hours.In 41 out of the 141 patients, it was further investigated whether repeated exposure to Curly Horses could induce tolerance to other horses. Patients in the tolerance induction study were tested annually for horse allergy using a nasal provocation test. The tolerance induction study showed that exposure to Curly Horses induced immune tolerance to other horses in 88% of patients who completed the study.To understand the mechanism causing hypoallergenicity, we performed IgE immunoblots to determine whether Curly Horse hairs contain IgE binding proteins. However, no differences in IgE reactivity were found between Curly and non-Curly Horses. Moreover, the immune tolerance induction study patients did not show decreased IgE reactivity to hairs from Curly or non-Curly Horses even though patients had developed tolerance. However, we did find increasing levels of anti-horse IgG antibodies in the study patients.Overall, our data strongly suggests that continuous exposure to Curly Horses can induce immune tolerance, rendering these patients non-reactive to horses. The reason for the reduced clinical allergenicity of Curly Horses remains unclear, but the data suggest that blocking IgG antibodies may be of importance for immune tolerance development.


Assuntos
Hipersensibilidade , Animais , Humanos , Cavalos , Hipersensibilidade/diagnóstico , Hipersensibilidade/veterinária , Alérgenos , Tolerância Imunológica , Imunoglobulina E , Imunoglobulina G
3.
Genes (Basel) ; 14(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002925

RESUMO

RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses (Equus caballus) were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; p < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like ACOD1, CCL5, CD40LG, FOS, IL1R2, IL20RA, and IL22RA2, on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like GATA2, GYG1, HIF1A, MOGAT1, PFKFB3, PLIN5, SIK1, and STBD1.


Assuntos
Cavalos , Condicionamento Físico Animal , Transcriptoma , Animais , Cavalos/genética
4.
Vet Res ; 54(1): 95, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853447

RESUMO

When resequencing animal genomes, some short reads cannot be mapped to the reference genome and are usually discarded. In this study, unmapped reads from 302 German Black Pied cattle were analyzed to identify potential pathogenic DNA. These unmapped reads were assembled and blasted against NCBI's database to identify bacterial and viral sequences. The results provided evidence for the presence of pathogens. We found sequences of Bovine parvovirus 3 and Mycoplasma species. These findings emphasize the information content of unmapped reads for gaining insight into bacterial and viral infections, which is important for veterinarians and epidemiologists.


Assuntos
Doenças dos Bovinos , Viroses , Bovinos , Animais , Análise de Sequência de DNA/veterinária , Sequenciamento Completo do Genoma/veterinária , Viroses/veterinária , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária
5.
Sci Rep ; 13(1): 8954, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268661

RESUMO

The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.


Assuntos
Animais Selvagens , Evolução Biológica , Masculino , Animais , Cavalos/genética , Filogenia , Animais Selvagens/genética , Cromossomo Y/genética , Genoma , Haplótipos , Variação Genética , DNA Mitocondrial/genética
6.
Genes (Basel) ; 14(3)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36980854

RESUMO

German Black Pied (DSN) is considered an ancestral population of the Holstein breed. The goal of the current study was to fine-map genomic loci for milk production traits and to provide sequence variants for selection. We studied genome-wide associations for milk-production traits in 2160 DSN cows. Using 11.7 million variants from whole-genome sequencing of 304 representative DSN cattle, we identified 1980 associated variants (-log10(p) ≥ 7.1) in 13 genomic loci on 9 chromosomes. The highest significance was found for the MGST1 region affecting milk fat content (-log10(p) = 11.93, MAF = 0.23, substitution effect of the minor allele (ßMA) = -0.151%). Different from Holstein, DGAT1 was fixed (0.97) for the alanine protein variant for high milk and protein yield. A key gene affecting protein content was CSN1S1 (-log10(p) = 8.47, MAF = 049, ßMA = -0.055%) and the GNG2 region (-log10(p) = 10.48, MAF = 0.34, ßMA = 0.054%). Additionally, we suggest the importance of FGF12 for protein and fat yield, HTR3C for milk yield, TLE4 for milk and protein yield, and TNKS for milk and fat yield. Selection for favored alleles can improve milk yield and composition. With respect to maintaining the dual-purpose type of DSN, unfavored linkage to genes affecting muscularity has to be investigated carefully, before the milk-associated variants can be applied for selection in the small population.


Assuntos
Genoma , Leite , Feminino , Bovinos/genética , Animais , Leite/metabolismo , Fenótipo , Estudo de Associação Genômica Ampla , Genômica
7.
Trop Anim Health Prod ; 54(2): 142, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332362

RESUMO

The improvement of milk production of indigenous Sudanese cattle such as Bos indicus Butana and its cross with Holstein is a major goal of the Sudanese government to ensure sufficient healthy nutrition in the country. In this study, we investigated the K232A polymorphism of diacylglycerol acyltransferase (DGAT1), a well-known modulator of milk production in other breeds. We determined allele frequencies and the allele effects on milk production. Therefore, 93 purebred Butana and 203 Butana × Holstein crossbred cattle were genotyped using competitive allele-specific PCR assays. Association analysis was performed using a linear mixed model in R. In purebred Butana cattle, the lysine DGAT1 protein variant K232, which is found to be associated with higher fat and protein contents, as well as higher fat yield was highly frequent at 0.929, while its frequency in Butana × Holstein crossbred cattle was 0.394. Significant effects were found on milk yield (P = 7.6 × 10-20), fat yield (P = 2.2 × 10-17), protein yield (P = 2.0 × 10-19) and lactose yield (P = 4.0 × 10-18) in crossbred cattle. As expected, the protein variant K232 was disadvantageous since it was decreasing milk, protein, and lactose yields by 1.741 kg, 0.063 kg and 0.084 kg, respectively. No significant effects were found for milk fat, protein, and lactose contents. The high frequency of the lysine DGAT1 protein variant K232 in Butana cattle could contribute to their high milk fat content in combination with low milk yield. In Butana × Holstein crossbred cattle, the DGAT1 marker can be used for effective selection and thus genetic improvement of milk production.


Assuntos
Diacilglicerol O-Aciltransferase , Leite , Animais , Bovinos/genética , Diacilglicerol O-Aciltransferase/genética , Frequência do Gene , Genótipo , Leite/metabolismo , Polimorfismo Genético
8.
Genes (Basel) ; 13(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205275

RESUMO

The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.


Assuntos
Variação Genética , Cromossomo Y , Animais , Feminino , Haplótipos , Cavalos/genética , Masculino , Linhagem , Filogenia , Cromossomo Y/genética
9.
Trop Anim Health Prod ; 54(1): 50, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022894

RESUMO

The Bos indicus zebu cattle Butana is the most commonly used indigenous dairy cattle breed in Sudan. In the last years, high-yielding Holstein dairy cattle were introgressed into Butana cattle to improve their milk yield and simultaneously keep their good adaption to extreme environmental conditions. With the focus on the improvement of milk production, other problems arose such as an increased susceptibility to mastitis. Thus, genetic selection for mastitis resistance should be considered to maintain healthy and productive cows. In this study, we tested 10 single nucleotide polymorphisms (SNPs) which had been associated with somatic cell score (SCS) in Holstein cattle for association with SCS in 37 purebred Butana and 203 Butana × Holstein crossbred cattle from Sudan. Animals were genotyped by competitive allele-specific PCR assays and association analysis was performed using a linear mixed model. All 10 SNPs were segregating in the crossbred Butana × Holstein populations, but only 8 SNPs in Sudanese purebred Butana cattle. The SNP on chromosome 13 was suggestively associated with SCS in the Butana × Holstein crossbred population (rs109441194, 13:79,365,467, PBF = 0.054) and the SNP on chromosome 19 was significantly associated with SCS in both populations (rs41257403, 19:50,027,458, Butana: PBF = 0.003, Butana × Holstein: PBF = 6.2 × 10-16). The minor allele of both SNPs showed an increase in SCS. Therefore, selection against the disadvantageous minor allele could be used for genetic improvement of mastitis resistance in the studied populations. However, investigations in a bigger population and across the whole genome are needed to identify additional genomic loci.


Assuntos
Leite , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Bovinos/genética , Feminino , Genômica , Genótipo
10.
BMC Genomics ; 22(1): 905, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922441

RESUMO

BACKGROUND: German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS: Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION: The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.


Assuntos
Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética
11.
Front Genet ; 12: 620253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708238

RESUMO

Genetic variations in the four casein genes CSN1S1, CSN2, CSN1S2, and CSN3 have obtained substantial attention since they affect the milk protein yield, milk composition, cheese processing properties, and digestibility as well as tolerance in human nutrition. Furthermore, milk protein variants are used for breed characterization, biodiversity, and phylogenetic studies. The current study aimed at the identification of casein protein variants in five domestic goat breeds from Sudan (Nubian, Desert, Nilotic, Taggar, and Saanen) and three wild goat species [Capra aegagrus aegagrus (Bezoar ibex), Capra nubiana (Nubian ibex), and Capra ibex (Alpine ibex)]. High-density capture sequencing of 33 goats identified in total 22 non-synonymous and 13 synonymous single nucleotide polymorphisms (SNPs), of which nine non-synonymous and seven synonymous SNPs are new. In the CSN1S1 gene, the new non-synonymous SNP ss7213522403 segregated in Alpine ibex. In the CSN2 gene, the new non-synonymous SNPs ss7213522526, ss7213522558, and ss7213522487 were found exclusively in Nubian and Alpine ibex. In the CSN1S2 gene, the new non-synonymous SNPs ss7213522477, ss7213522549, and ss7213522575 were found in Nubian ibex only. In the CSN3 gene, the non-synonymous SNPs ss7213522604 and ss7213522610 were found in Alpine ibex. The identified DNA sequence variants led to the detection of nine new casein protein variants. New variants were detected for alpha S1 casein in Saanen goats (CSN1S1 ∗C1), Bezoar ibex (CSN1S1 ∗J), and Alpine ibex (CSN1S1 ∗K), for beta and kappa caseins in Alpine ibex (CSN2 ∗F and CSN3 ∗X), and for alpha S2 casein in all domesticated and wild goats (CSN1S2 ∗H), in Nubian and Desert goats (CSN1S2 ∗I), or in Nubian ibex only (CSN1S2 ∗J and CSN1S2 ∗K). The results show that most novel SNPs and protein variants occur in the critically endangered Nubian ibex. This highlights the importance of the preservation of this endangered breed. Furthermore, we suggest validating and further characterizing the new casein protein variants.

12.
Gut Microbes ; 12(1): 1782163, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715918

RESUMO

Non-communicable diseases, such as the metabolic syndrome and inflammatory bowel disease, constitute serious public health threats in developed countries. Besides environmental factors, genetic predispositions contribute to the onset and progression of the disease. State-of-the-art mouse models recently highlight the involvement of Toll-like receptor 5 (TLR5)-driven microbiota composition in the development of metabolic disorders. Here, we discuss the causes and consequences of an altered enteric microbiota and provide information on a similar mechanism in another species, the pig. We show for the first time that a single nucleotide polymorphism in the porcine TLR5 gene conferring impaired functionality is associated with changes in the intestinal microbiota in adult sows and neonatal piglets. Changes in the developing adaptive cellular immune response support the concept of TLR5-driven changes of the microbe-host interplay also in the pig. Together, these findings suggest that pigs with impaired TLR-functionality might represent a model for TLR5-driven diseases in humans.


Assuntos
Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/genética , Síndrome Metabólica/genética , Receptor 5 Toll-Like/genética , Imunidade Adaptativa , Animais , Fezes/microbiologia , Microbioma Gastrointestinal , Predisposição Genética para Doença/genética , Genótipo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Síndrome Metabólica/imunologia , Síndrome Metabólica/microbiologia , Polimorfismo de Nucleotídeo Único , Suínos
13.
Genes (Basel) ; 11(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545389

RESUMO

Although the European roe deer (Capreolus capreolus) population of North-West Germany has a remarkable number of melanistic specimens between 10% and 25%, the underlying genetic mutation-causing melanism is still unknown. We used a gene targeting approach focusing on MC1R and ASIP as important genes of coat coloration. Overall, 1384 bp of MC1R and 2039 bp of ASIP were sequenced in 24 specimens and several SNPs were detected. But only the ASIP-SNP c.33G>T completely segregated both phenotypes leading to the amino acid substitution p.Leu11Phe. The SNP was further evaluated in additional 471 samples. Generally, all black specimens (n = 33) were homozygous TT, whereas chestnut individuals were either homozygote GG (n = 436) or heterozygote GT (n = 26). Considering the fact that all melanistic animals shared two mutated alleles of the strongly associated SNP, we concluded that melanism is inherited in a recessive mode in European roe deer.


Assuntos
Proteína Agouti Sinalizadora/genética , Cervos/genética , Cor de Cabelo/genética , Melanose/genética , Alelos , Animais , Genótipo , Alemanha Ocidental , Humanos , Melanose/metabolismo , Mutação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 1 de Melanocortina/genética
15.
Trop Anim Health Prod ; 52(3): 1211-1222, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31782121

RESUMO

The aim of the present study was to assess genetic variation that is characteristic for Sudanese goat breeds in the milk whey protein genes (LALBA and BLG). Four Sudanese goat breeds were screened for variability in LALBA and BLG genes at the DNA level by comparative sequencing of five animals per breed. Sixteen SNPs were identified in LALBA: seven in the upstream region, six synonymous, and three in the 3´-UTR. Three novel synonymous SNPs in exon 2 (ss5197800003, ss5197800012, and ss5197800004) were found in Nubian, Desert, and Nilotic, but not in Taggar goats. One SNP in the promoter of LALBA (rs642745519) modifies a predicted transcription factor binding site for Tcfe2a. The SNPs in the 3'-UTR (rs657915405, rs641559728, and rs664225585) affect predicted miRNA target sites. With respect to haplotypes in the exonic region, haplotype LALBA-A is most frequent in Nubian, Desert, and Nilotic goats, while haplotype LALBA-D is prevalent in Taggar goats. In BLG, 30 SNPs were detected: eight in the upstream gene region, two synonymous, 17 intronic, and three in the 3'-UTR. Among the 30 identified SNPs, 15 were novel. Four of these novel SNPs were located in the upstream gene region, one was synonymous, and ten were intronic. The novel synonymous SNP (ss5197800017), located in exon 2, was only found in Nubian and Nilotic goats. The SNPs ss5197800010 and rs635615192 in the promoter are located in predicted binding sites of transcription factors (M6097, Elk3, Elf5, and GABPA). Among seven haplotypes detected in the coding region, haplotype BLG-A is most frequent in Nubian and Nilotic goats while haplotype BLG-B is most frequent in Desert and Taggar goats. The high variability in regulatory gene regions among Sudanese goats could potentially affect the quality and yield of whey proteins in goat milk and provide a wide resource for genetic improvement of milk production and milk technology characteristics.


Assuntos
Cabras/genética , Proteínas do Soro do Leite/genética , Animais , Cruzamento , Regulação da Expressão Gênica , Cabras/fisiologia , Haplótipos , Leite/química , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sudão , Proteínas do Soro do Leite/metabolismo
16.
Sci Adv ; 4(4): eaap9691, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29675468

RESUMO

Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection-initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times.


Assuntos
Animais Domésticos , Variação Genética , Cavalos/genética , Animais , DNA Mitocondrial , Domesticação , Europa (Continente) , Evolução Molecular , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Geografia , Haplótipos , Cavalos/classificação , Seleção Genética , Cromossomo Y
17.
Open Vet J ; 8(1): 40-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445620

RESUMO

Studies of mitochondrial DNA (mtDNA) as well as the non-recombining part of the Y chromosome help to understand the origin and distribution of maternal and paternal lineages. The Kabardian horse from Northern Caucasia which is well-known for strength, stamina and endurance in distance riding has a large gap in its breeding documentation especially in the recent past. A 309 bp fragment of the mitochondrial D-loop (156 Kabardian horses) and six mutations in Y chromosome (49 Kabardian stallions), respectively, were analyzed to get a better insight into breeding history, phylogenetic relationship to related breeds, maternal and paternal diversity and genetic structure. We found a high mitochondrial diversity represented by 64 D-loop haplotypes out of 14 haplogroups. The most frequent haplogroups were G (19.5%), L (12.3%), Q (11.7%), and B (11.0%). Although these four haplogroups are also frequently found in Asian riding horses (e.g. Buryat, Kirghiz, Mongolian, Transbaikalian, Tuvinian) the percentage of the particular haplogroups varies sometimes remarkable. In contrast, the obtained haplogroup pattern from Kabardian horse was more similar to that of breeds reared in the Middle East. No specific haplotype cluster was observed in the phylogenetic tree for Kabardian horses. On Kabardian Y chromosome, two mutations were found leading to three haplotypes with a percentage of 36.7% (haplotype HT1), 38.8% (haplotype HT2) and 24.5% (haplotype HT3), respectively. The high mitochondrial and also remarkable paternal diversity of the Kabardian horse is caused by its long history with a widely spread maternal origin and the introduction of Arabian as well as Thoroughbred influenced stallions for improvement. This high genetic diversity provides a good situation for the ongoing breed development and performance selection as well as avoiding inbreeding.

18.
BMC Genet ; 18(1): 92, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058610

RESUMO

BACKGROUND: Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. RESULTS: More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (FIS) did not differ from zero. Fst coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high Fst values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. CONCLUSIONS: The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high Fst values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.


Assuntos
Marcadores Genéticos , Genética Populacional , Genoma , Cabras/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos , Animais , Feminino , Frequência do Gene , Filogenia , Análise de Componente Principal/métodos , Sudão
19.
Lab Anim ; 51(6): 573-582, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28696160

RESUMO

Genetic alterations can unpredictably compromise the wellbeing of animals. Thus, more or less harmful phenotypes might appear in the animals used in research projects even when they are not subjected to experimental treatments. The severity classification of suffering has become an important issue since the implementation of Directive 2010/63/EU on the protection of animals used for scientific purposes. Accordingly, the breeding and maintenance of genetically altered (GA) animals which are likely to develop a harmful phenotype has to be authorized. However, a determination of the degree of severity is rather challenging due to the large variety of phenotypes. Here, the Working Group of Berlin Animal Welfare Officers (WG Berlin AWO) provides field-tested guidelines on severity assessment and classification of GA rodents. With a focus on basic welfare assessment and severity classification we provide a list of symptoms that have been classified as non-harmful, mild, moderate or severe burdens. Corresponding monitoring and refinement strategies as well as specific housing requirements have been compiled and are strongly recommended to improve hitherto applied breeding procedures and conditions. The document serves as a guide to determine the degree of severity for an observed phenotype. The aim is to support scientists, animal care takers, animal welfare bodies and competent authorities with this task, and thereby make an important contribution to a European harmonization of severity assessments for the continually increasing number of GA rodents.


Assuntos
Bem-Estar do Animal/normas , Cruzamento , Camundongos , Fenótipo , Ratos , Animais , Animais de Laboratório , União Europeia
20.
Sci Rep ; 6: 38548, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924839

RESUMO

Horses have been valued for their diversity of coat colour since prehistoric times; this is especially the case since their domestication in the Caspian steppe in ~3,500 BC. Although we can assume that human preferences were not constant, we have only anecdotal information about how domestic horses were influenced by humans. Our results from genotype analyses show a significant increase in spotted coats in early domestic horses (Copper Age to Iron Age). In contrast, medieval horses carried significantly fewer alleles for these phenotypes, whereas solid phenotypes (i.e., chestnut) became dominant. This shift may have been supported because of (i) pleiotropic disadvantages, (ii) a reduced need to separate domestic horses from their wild counterparts, (iii) a lower religious prestige, or (iv) novel developments in weaponry. These scenarios may have acted alone or in combination. However, the dominance of chestnut is a remarkable feature of the medieval horse population.


Assuntos
Cavalos/fisiologia , Pigmentação , Animais , Simulação por Computador , DNA Antigo/análise , Método de Monte Carlo , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA